美國聯邦通訊委員會通過「數位機會資料蒐集計畫附加規則」,將改善美國境內寬頻網路布建差距之辨識

  美國聯邦通訊委員會(Federal Communication Commission, FCC)於2021年1月19日通過「數位機會資料蒐集計畫」附加規則(Digital Opportunity Data Collection additional rules),將幫助FCC蒐集更精確與準確的網路寬頻布建資訊(broadband deployment data),以完成美國境內寬頻網路布建差距之辨識任務。該規則規範了需向主管機關報告關於網路近用性和/或網路覆蓋率相關資訊的報告主體,使需要報告的固網和行動寬頻服務供應商範圍更加明確。另外該規則亦有針對網路服務供應商提出關於固網速度與網路延遲相關報告時,所應遵守事項作規範。

  該規則亦針對蒐集各州、地方與部落網路寬頻布建資訊的對應實體(mapping entities)、聯邦政府機構,與第三方單位,制定此三方進行辨識寬頻網路布建差距作業時所應遵守之注意事項,並為網路服務供應商提交固網和行動寬頻覆蓋率地圖資料時,設置其提交流程所應遵守之相關規範。該規則要求行動式網路服務供應商提交依據實際情況的相關基礎設施資訊或現場測試資料,作為FCC對行動式網路覆蓋範圍調查和驗證的資料,這些資料還將應用於擴大某些特定區域行動式網路寬頻覆蓋範圍的相關作業上,以增加該區域居民的使用數位機會。

  「數位機會資料蒐集計畫」附加規則將使FCC確切知道寬頻網的可近用服務位置和不可近用服務位置,以及更了解美國的寬頻網路需求,以確保將來每位美國公民都能使使用高速網路服務,這同時也是「數位機會資料蒐集計畫」的目的。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國聯邦通訊委員會通過「數位機會資料蒐集計畫附加規則」,將改善美國境內寬頻網路布建差距之辨識, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8623&no=64&tp=5 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
從英國 NHS 國家 IT 計畫看電子病歷之推動:以病患個人資訊隱私保護為中心

臉書(Facebook)被控告違反和解協議

  臉書(Facebook)在2011年11月與美國聯邦貿易委員會(Federal Trade Commission, FTC)針對用戶資料的隱私權問題達成和解,包括第一:臉書必須遵守其自行提出的隱私權政策;第二:臉書必須要事先得到使用者的同意,才能更改其資訊分享的設定;第三:當使用者刪除其帳號的三十天內,臉書必須實際上使任何人不能再取得相關資訊;第四:必須對新產品或服務建立並維護其隱私權保障的計畫;第五:在未來二十年內,臉書必須由獨立的第三人稽查其隱私政策,以維護使用者的資訊隱私保護。   但是公益團體電子隱私資訊中心(Electronic Privacy Information Center, EPIC)最近指控臉書的Timeline功能違反和解協議的第二條。在EPIC的指控中表示:臉書必須要事先得到使用者的同意,才能更改其資訊分享的設定。而Timeline的功能在2011年12月6日上線後,完全改變了使用者揭露其資訊的方式,強化使用者張貼的重要事件,並回溯資料至該使用者第一次登入臉書時(甚至更早至第一次輸入相關資料時)。雖然臉書提供七天時間給使用者可以編輯Timeline,刪除不希望公開的照片或貼文,但幾乎沒有人知道。EPIC因而要求FTC介入調查。

落實綠色供應鏈 台灣廠商尚待加強

  歐盟推動的有毒物質禁制令( Restriction of Hazardous Substances, RoHS )自今( 2006 )年 7 月後開始啟動,國內多家 IT 廠商如主機板、液晶螢幕等業者均表示產品符合 RoHS 規範,政府提供的資料也指出,台灣大約八成的供應商和製造商符合 RoHS 規範,但是依照綠色環保產品行銷業者的觀察,實際數據遠低於此,應該只有五成不到。   所謂的 RoHS ,係明列自 2006 年 7 月後,製程、設備及材料處理研發禁止使用 6 種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。如果一旦抽驗發現有毒物質,產品即可能遭受召回、高額罰款或者長期法律訴訟。   廠商所謂的「符合」還有很多可議的空間,主要原因有兩種:首先製造商在取得供應商提供的原物料時,也許前者的確不含有毒物質,但是在製程、運送過程中,原物料仍有被污染的可能性,例如有鉛和無鉛產品共用一條生產線。然而製造商但憑供應商提供的品質文件就聲稱終端產品符合了 RoHS 規範。   其次,即使是供應商表示原物料符合 RoHS 規範,也還有待商榷,因為這必須判定供應商的原物料送審時,是以混測還是均質檢測。所謂的混測就是把包含兩三種不同原料的產品一併送測,這時候即使單一原料含有有毒物質,但在和其他物質含量平均後就無法檢測出來。均質檢測則就是每個原料都單獨出來檢驗。由於後者的成本高出許多,因此國內供應商多以混測方式送審,使得檢測結果可信度並非絕對。   RoHS 對將大量產品輸出歐洲市場的台灣 IT 產業影響深遠,根據經濟部技術處所提供的資料,據估計將有近 3.5 萬家廠商、高達新台幣 2,446 億元的產值將受到衝擊。基於此原因,經濟部技術處於去( 2005 )年七月啟動「寰淨計畫( G 計畫)」,結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品。儘管政府推動甚殷,國內供應商的確在前年開始準備,不過要確實符合 RoHS 之規範精神,而非僅是形式上符合,仍有待政府與業者共同努力。

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.

TOP