新冠疫情下日本的數位經濟實踐之路
資訊工業策進會科技法律研究所
2021年3月9日
2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。
壹、主要問題
數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。
針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。
執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。
貳、具體案例
就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。
提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。
參、事件評析
有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。
經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。
參考連結
日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf
[1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。
[2]同前註,頁15。
[3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。
[4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。
[5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。
國家高速公路運輸安全局(NHTSA)發佈即將針對車輛與車輛間通訊訂立規則的訊息,以管理車對車之間(V2V)通訊技術,V2V技術最主要著眼在於避免碰撞,根據調查百分之94的車禍事故都有人為因素牽涉其中,V2V技術可以讓車輛有效的認知碰撞的情況與潛在威脅。V2V技術仰賴的是鄰近車輛之間的通訊溝通並交換訊息,以警告駕駛潛在的導致碰撞安全威脅,例如:V2V可以警告駕駛前車正在煞停,所以候車必須隨之減速以免碰撞,或是警告駕駛在經過十字路口的時候處於不安全的情況,因為有一輛看不見的車輛正以高速朝路口靠近。V2V通訊技術使用精密的短距離通訊技術以交換車與車子之間的基本訊息,諸如:位置、速度、方向已決定是否要警告駕駛以避免碰撞。本項規則制訂的提案可謂是數十年來NHTSA與各部門間合作努力的成果,包含汽車產業界、各州運輸交通部門、學術機構以建立共識的標準。NHTSA的提案當中規制運用在所有輕型車輛V2V技術使用無線電傳輸協定與光譜頻寬總稱為精密短距通訊技術(DSRC)。這項立法規制要求所有的車輛都應該要透過標準化技術講共同的語言,並且要求所有車輛均要納入安全與隱私保護的措施。本次即將管制的車輛包括一般轎車、多功能車(MPV)、卡車、公車,車輛在4536公斤以下的車輛未來必須配備V2V的通訊系統。 ●交換資訊部分 僅交換基本安全訊息,其中包含車輛的動態訊息諸如行進方向、速度、位置。這些基本的安全訊息每秒交換高達10次,裝有V2V裝置的車輛將保留這些訊息,去評判是否有碰撞的威脅。如果系統覺得有必要,將立即發出訊息警告駕駛採取必要措施避免立即碰撞。 ●V2V未來可能應用 ■十字路口動態輔助:車輛進入十字路口前,如果會發生碰撞會加以警示。 ■左轉輔助:駕駛一旦左轉會撞上來車的時候,特別在於駕駛視線被擋住的情況下,會加以警示。 ■警急電子煞車燈:同方向行進車輛,前車忽然減速的情況下,V2V技術可以允許使經過透視前車的情況下,知道駕駛目前正在減速,所以可以針對視線外的急煞車預先因應。 ■前端碰撞警示:前端碰撞警示將警告駕駛即將到來的撞擊,避免撞擊前車。 ■盲點警示與變換車道警示:車輛變換車道的時候系統將警告位於盲點區域的車輛即將靠近,避免在變換車道的時候發生碰撞。 ■超車警示:警告駕駛超車並不安全,因為對向車道正有車輛往此方向前進。 ●面對網路攻擊 ■設計訊息認證方案,確保交換訊息時的安全性。 ■每一項交換的訊息均會經過偵測避免惡意攻擊。 ■惡意攻擊的回報機制:諸如身份錯誤配置的訊息、惡意車輛阻擋V2V訊息。 ●隱私保護 在設計最初期即導入V2V僅允許分享蒐集通用的安全資訊,對於個人或其他車輛的資訊不能加以蒐集與傳輸。 目前NHTSA將針對本項提案蒐集公眾意見(預計將進行九十天),並審核公眾所提交意見是否可行,在發佈最終的規則。
AI 創作是否能獲得著作權?——Thaler 訴美國著作權局案解析AI 創作是否能獲得著作權?——Thaler 訴美國著作權局案解析 資訊工業策進會科技法律研究所 2025年04月16日 美國哥倫比亞特區聯邦上訴法院於2025年3月18日裁定Stephen Thaler博士與美國著作權局的上訴案,認為AI繪圖作品無法受著作權保護,因為AI並非自然人,無法成為作品作者或進行「職務上創作」。此判決再次確認了美國對AI創作無著作權保護的立場。[1] 壹、事件摘要 此案起源於2019年,Thaler博士為AI繪圖作品「A Recent Entrance to Paradise」向著作權局申請著作權登記,但因AI非自然人創作者,著作權局於2022年駁回申請。[2]Thaler博士認為,這違反憲法對創作的保護,並主張其研發之AI系統「Creativity Machine」為作者,而其本人則透過AI的「職務上創作」享有著作權。Thaler博士不服2023年聯邦地方法院判決而提起上訴。[3] 貳、重點說明 從美國哥倫比亞特區聯邦上訴法院之判決觀之,本案爭點在於: 一、AI是否符合著作權法「作者」之定義:即AI生成作品是否滿足「原創性」與「獨立創作」標準;美國著作權法是否允許非人類創作者擁有著作權? 二、AI作品歸屬問題:Thaler博士主張AI創作之著作權應歸屬於開發者,或透過「職務上創作」使其本人取得著作權。然自然人與AI間關係;是否適用於人類創作者與雇主間法律關係;AI是否能被視為僱員? 上訴法院認同著作權局於2023年3月16日發佈之《AI生成作品著作權登記指引》,該指引強調著作權目前僅保護自然人創作。AI獨立創作或主導作品表達情況無法獲得著作權保護,即使使用者透過指令或調整輸出,亦無法改變此原則。經審查,法院認為因著作權法規定涉及生命週期、由自然人將作品視為遺產繼承,與創作意圖等概念,顯示立法者設定作者應為自然人。本案係爭作品仍由AI獨立創作,Thaler博士僅在初始階段下達指令,故不符「原創性門檻」(Threshold of Originality)之標準。[4] 職務上創作方面,該適用於人類創作者與雇主之間的法律關係,而AI並非法律上自然人,故無法簽署雇傭合約成為員工。[5]綜上,Thaler博士無法透過以上方式取得作品著作權。法院支持著作權局之裁定與意見,認為無需討論至憲法層面問題,僅就目前著作權法是否涵蓋AI自主創作作品及足夠。 參、事件評析 我國智財局已於2023年6月16日發布函釋[6],說明生成式AI模型生成內容是否為獨立之著作而受著作權法保護,視有無「人類精神創作」決定,目前與美國立場相似。美國聯邦上訴法院此次判決,確認AI無法成為著作權的作者,著作權保護僅限於人類創作者。雖然此判決不影響人類使用AI創作,但未來若要改變本案不保護AI自主生成的純機器作品的立場,或許不會從著作權法著手,而是透過立法方式創設新的法律權利來應對。美國國會與著作權局仍在持續研究AI相關法律,如2024年4月美國眾議院司法委員會舉行聽證會[7],討論AI輔助創作與發明的智慧財產權問題,會上專家認為現行法律已涵蓋大部分AI相關議題,新增著作權法規可能增加複雜性並抑制創新。資策會科法所目前持續協助國科會、國發會、文化部等政府部會,觀測研析AI著作權國際法制發展,後續將針對AI在文化藝術運用的著作權等風險與因應提供創作人指引,並因應行政院發展我國主權AI的政策,研提資料取得困境的法制面解決建議。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Thaler v. Perlmutter, 23-5233, (D.C. Cir. 2025), https://law.justia.com/cases/federal/appellate-courts/cadc/23-5233/23-5233-2025-03-18.html (last visited Mar. 26, 2025) [2]Re: Second Request for Reconsideration for Refusal to Register A Recent Entrance to Paradise (Correspondence ID 1-3ZPC6C3; SR # 1-7100387071), U.S. Copyright Office Review Board,https://www.copyright.gov/rulings-filings/review-board/docs/a-recent-entrance-to-paradise.pdf(last visited Mar. 26, 2025) [3]US appeals court rejects copyrights for AI-generated art lacking 'human' creator, https://www.reuters.com/world/us/us-appeals-court-rejects-copyrights-ai-generated-art-lacking-human-creator-2025-03-18/?utm_source=chatgpt.com(last visited Mar. 26, 2025) [4]Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence, 88 Fed. Reg. 16,190, 16,192 (March 16, 2023), https://www.skadden.com/-/media/files/publications/2023/03/copyright-office-issues-guidance-on-ai-generated-works/formalguidance.pdf (last visited Mar. 26, 2025) [5]許慈真,美國聯邦地方法院判決Thaler v. Perlmutter : AI生成作品不受著作權保護,2023年9月20日,北美智權報,https://naipnews.naipo.com/9074 (最後點閱時間 : 2025年3月26日)。 [6]智財局函釋(2023年6月16日經授智字第11252800520號函),https://topic.tipo.gov.tw/copyright-tw/cp-407-855070-f1950-301.html (最後點閱時間 : 2025年3月26日)。 [7]HEARING BRIEF: Judiciary Subcommittee Hearing on Artificial Intelligence and Intellectual Property – IP Protection for AI-Assisted Inventions and Creative Works, April 10th, 2024, https://infojustice.org/archives/45692?utm_source=chatgpt.com (last visited Mar. 26, 2025)
區塊鏈技術運用於智財保護區塊鏈技術具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵,可加密記錄該系統上所有使用者之行為資訊,並使該資訊不易篡改。其最初被運用在虛擬貨幣比特幣(Bitcoin)的建構,發展至今應用已拓展至諸多領域,包括對智慧財產權的保護。美國的blockai網站即是將區塊鏈技術運用於智財保護的實例之一,美國過去由國會圖書館負責著作權之管理之作法,在程序上曠日費時且效率不彰,故blockai於2015年創立於美國舊金山,旨在提供著作人更簡單有效的選擇。其作法係由著作人於blockai註冊帳號後進行作品之註冊並取得一相應之著作權證書,並由blockai以區塊鏈技術建立公眾資料庫,透過區塊鏈不可篡改、透明開放等技術特徵來證明作品確由著作人創作,利於後續舉證維權。現階段blockai開立之證書雖未被授與法律上地位,但依區塊鏈的技術特徵,可望成為法庭攻防上著作人有力之科學證據。 揆諸我國相關法律,我國非採著作登記制,著作人為維護自身權利需先證明系爭著作為自己所創作,惟訴訟實務上著作人多半舉證不易。若參考美國作法導入區塊鏈技術落實著作權保障,或可作為科技整合法律之新標竿。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)