歐盟商標協會(ECTA)針對3D列印設計保護修法方向,向歐盟提交立場意見書

  2021年4月26日,歐盟商標協會(European Communities Trade Mark Association,以下簡稱ECTA)針對3D列印設計保護修法方向,向歐盟提交一份立場意見書(position paper)。歐盟自1998年發布《設計指令》(Directive 98/71/EC on the legal protection of designs)及2002年發布《設計規則》(Council Regulation(EC) No 6/2002 on Community designs)以來,已多年未進行修正;為了能對設計提供更有效的法律保護,歐盟從2018年起開始進行修法的公眾諮詢,並於2020年11月提出修法評估報告。

  ECTA一直以來都很關注3D列印技術發展涉及的智慧財產議題,在意見書中列出了修法時應納入評估的重點。例如ECTA指出,雖然3D列印所使用的CAD模型檔案僅是列印過程中的媒介,檔案本身不能受到設計法律的保護,但檔案中包含了設計藍圖及其設計特徵,為了讓以數位形式呈現的設計能受到保護,建議應考慮修改《設計規則》第3條(b)及《設計指令》第1條(b)中對於產品(product)的定義,將CAD模型檔案及其他任何含有以數位形式呈現設計的物件(items)也納入產品的定義之中。

  其次,ECTA認為應針對任何明知有侵權事實,但仍提供幫助的行為人課予輔助侵權責任(contributory infringement),以提供設計權人更有效的武器來捍衛自身權利。如行為人未經設計權人同意,自行利用3D儀器掃描物體,根據所得數據製作成CAD模型檔案,並將該CAD模型檔案提供給直接侵權人時,應成立輔助侵權。

  最後,ECTA認為目前沒有針對3D列印技術制定專法的必要,僅需要在現行智財法律體系中進行修法調整即可,以避免法律體系過於複雜。

相關連結
你可能會想參加
※ 歐盟商標協會(ECTA)針對3D列印設計保護修法方向,向歐盟提交立場意見書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8669&no=55&tp=1 (最後瀏覽日:2026/01/04)
引註此篇文章
你可能還會想看
英國衛生部提出健康照護科技行為準則,以增進資訊安全以及新技術操作品質

  英國近來透過電子醫療紀錄的應用,以智慧演算法(intelligent algorithms)開發結合數位技術的創新醫療科技,這些成果多是以國民健保署(National Health Service, NHS)的資料做為基礎,因此關於資訊保障等議題也開始受到政府之重視。   2018年9月5日,英國衛生部(Department of Health and Social Care)在NHS健康與護理創新博覽會(NHS Health and Care Innovation Expo Conference 2018)中公布「以資料導向的健康照護科技之行為準則」(Code of Conduct for Data-driven Health and Care Technology)。此準則主要鼓勵研發公司在設計產品時,將患者的資訊安全以及新技術的操作品質列入考量。   此行為準則的目的主要在於改善整體研發環境,內容包含十項原則,分別為:界定使用者、界定價值(value proposition)、對使用的資料保持合理(fair)、透明(transparent)以及當責(accountable)的立場、符合一般資料保護規則(General Data Protection Regulation, GDPR)的資料最小化原則(data minimisation principle)、利用公開之標準、公開被使用的資料以及演算法的極限、在設計中內建合適的安全性設定、界定商業策略、展示技術使用上的有效性、以及公開演算法的類型、開發原因、與操作過程的監控方式。   官方期望接下來能廣納相關人員的建議,以增進此指引在產業運作上的適用性,並預期於2018年12月公布更新的版本。

從美國PayPal經驗與歐盟支付服務指令論我國第三方支付服務之現狀與未來

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

自駕車之發展與挑戰-以德國法制為借鑑

TOP