英國商業、能源暨產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2021年3月2日向英國國會提交「先進研究發明署法案」(The Advanced Research and Invention Agency Bill),作為英國政府設立獨立研究機構「先進研究發明署」(Advanced Research and Invention Agency, ARIA)的法源依據,用以補助高風險、高報酬之前瞻科學與技術研究,將仍處於想像階段的新技術、發現、產品或服務化為現實。
本法案授予ARIA高度的自主性,使ARIA得以招攬世界頂尖的科學家與研究人員,規劃最具前瞻性與發展潛力的研究領域提供研發補助;同時也給予相較於其他研究機構更多容許失敗的彈性,並明確指出失敗是前瞻科學研究必然經歷的過程。ARIA對於研發資金的運用將因而獲得充分的自主性與彈性,包含對於研究計畫提供快速啟動基金與其他獎項做為激勵措施,或是依據研發進展即時決策是否延續或中止。
ARIA取法自美國國防先進研發署(Defense Advanced Research Projects Agency, DARPA),美國DARPA在網際網路、GPS等技術研發上的成就,直到近期支持針對COVID-19的mRNA疫苗及抗體療法從而取得重大進展,在在顯示了DARPA模式的可行性與重大影響力,而其成功的關鍵在於高度的自主性、靈活性以及最少的行政程序障礙,因此法案將允許ARIA不受政府採購相關限制、並免於政府資訊公開的義務,以減少行政程序對於研發進程的影響。但ARIA每年度仍須向國家審計署提供年度會計報告以作為政府對其最低限度的監督手段,除此之外,商業部長將有權中止與敵對勢力對象的研發合作或結束特定的研究計畫。
本文為「經濟部產業技術司科技專案成果」
近年日本中小企業與大型企業合作研發、進行交易合作的商業型態日益增加,故日本中小企業廳自2017年1月至2020年3月為止(約三年間),針對日本的中小企業進行了訪談,調查了中小企業與大型企業間約12,000筆合作研發等商業行為,從中發現了許多問題,如大型企業常藉由合作研發,參觀中小企業工廠的名義,實際上是竊取中小企業技術、know how;其他還有以共同研發為名,擅自將研發成果使用在其他領域的案例等。 由於中小企業常在商業合作上處與弱勢,故日本政府為促使中小企業與大型企業的合作能符合公平交易原則、以及保護中小企業的智慧財產、技術,防止中小企業的智慧財產、技術、Know how等無形資產被商業合作夥伴(大型企業)不當使用或以非法的方式取得、使用,故日本政府計劃於今年秋天發布「中小企業智慧財產、技術保護指針」。 為改善中小企業與大型企業合作時,可能遭遇的智財、技術歸屬等問題,除透過「中小企業智慧財產、技術保護指針」提供具體的對策與措施,日本中小企業廳將於2021年編列相關預算,以智慧財產權的角度協助中小企業解決智財相關問題,並強化中小企業保護智慧財產權之意識,另外還會提供中小企業智財諮詢等相關支援。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國明尼亞波利斯市禁止政府部門使用人臉辨識技術美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。 新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。 明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
技術進步、資訊流通、隱私保障