美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。
該法案分為六大部分:
其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。
同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。
參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。
美國運輸部(Department of Transportation)於2018年10月4日公布「自駕車3.0政策文件」(Preparing for the Future of Transportation: Automated Vehicles 3.0)」,提出聯邦政府六項自駕車策略原則: 安全優先:運輸部將致力於確認可能之安全風險,並促進自駕車可帶來之益處,並加強公眾信心。 技術中立:運輸部將會依彈性且技術中立之策略,促進自駕車競爭與創新。 法令的與時俱進:運輸部將會檢討並修正無法因應自駕車發展之交通法令,以避免對自駕車發展產生不必要之阻礙。 法令與基礎環境的一致性:運輸部將致力於讓法規環境與自駕車運作環境於全國具備一致性。 主動積極:運輸部將主動提供各種協助,以建構動態且具彈性之自駕車未來,亦將針對車聯網等相關補充性技術進行準備。 保障並促進自由:運輸部將確保美國民眾之駕駛自由,並支持透過自駕科技來增進安全與弱勢族群之移動便利,進而促進個人自由。 「自駕車3.0政策文件」並建立五個策略,包括利益相關人參與、典範實務(best practice)、自願性標準、目標研究(Targeted research)與規範現代化等,配合以上原則進行。美國運輸部並肯認其先前提出之「安全願景2.0(A Vision for Safety)」中之安全性架構,並鼓勵技術與服務開發商持續遵循自願性之安全評估,並重申將依循自我認證(self-certification)而非特定認證管制途徑,以促進規範之彈性。
美伊利諾最高法院判決:醫療服務提供者例外不受生物資訊隱私法保護美國伊利諾州伊利諾最高法院(Illinois Supreme Court)於2023年11月30日對Mosby v. The Ingalls Memorial Hospital et al.案做出判決:認定符合聯邦法規健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)規定,基於「治療、付款或健康照護運作」之前提下,除病患外即使是醫療服務提供者的生物識別資訊被蒐集、利用或揭露,同樣不受伊利諾州生物資訊隱私法(Biometric Information Privacy Act, BIPA)的保護。 伊利諾州現行以BIPA對蒐集或保留任何個人的生物識別資訊(如虹膜、聲紋、指紋或生物樣本等)做了較為嚴格的限制,原則上這些資訊不能在未經當事人同意的情況下被蒐集、利用或揭露。除非是1.由醫療保健機構從患者身上蒐集的生物識別資訊;或2.根據HIPAA規定,基於進行治療、付款或健康照護運作的前提來蒐集、使用或儲存的生物識別資訊,才可例外免經當事人同意(biometric identifiers do not include information captured from a patient in a health care setting or information collected, used, or stored for health care treatment, payment, or operations under the federal HIPAA.)。然而,基於進行治療、付款或健康照護運作的前提,資料主體除接受治療或健康照護的病患外,是否涵蓋醫療服務提供者(如醫護人員),則有疑義。 本案因醫院的護理人員認為醫療院所未經同意,使用帶有指紋掃描功能的藥品櫃,來蒐集、使用或儲存了他們的生物識別資訊,因此提起訴訟。伊利諾州的地方法院和巡迴上訴法院於本案均支持原告提出的主張。然而,伊利諾州最高法院審理時則透過文義解釋以及條文結構分析之方式,認為立法者係有意於例外規定中重複使用「資訊」一詞,兩次「資訊」之內涵應有不同。故前段的資訊係指患者的資訊,而後段的資訊來源則應包含了醫療照護提供者,方符合立法者真意。 生物識別資訊風險較高,過去被認為需要取得當事人積極同意授權;於本案中伊利諾州最高法院權衡認為基於「治療、付款或健康照護運作」情境下,如本案情形係用來確保醫藥品被正確分配給需要的患者,因此對患者以外的醫療人員隱私權做出限制符合例外規定。本案揭示了個資隱私得為合理利用的情境之一,然而HIPAA對於資料傳輸較寬鬆的規範會否又與資料保護的趨勢有所違背,仍須持續關注相關案例發展。
論智慧科技裝置之法律問題—美國資訊隱私法制變革與發展 英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。