美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。
該法案分為六大部分:
其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。
同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。
參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。
英國科技創新部(Department for Science, Innovation & Technology, DSIT)於2024年2月9日發布「科學技術框架」(Science and Technology Framework)最新施政進度,相關重點如下: (1)此框架旨在強化國家科技競爭力,聚焦五項關鍵技術領域:人工智慧、工程生物學、未來通訊、半導體和量子技術。 (2)擬實現十項關鍵措施:辨識關鍵技術、對國內外展示英國科技實力,吸引優秀人才及投資、促進公私部門投資新興科技、發揮英國多樣化技能、技術和創業人才優勢、為新創產業提供資金補助、促進公部門採購轉型、戰略性參與國際事務提升話語權、建立數位基礎設施優化研發環境、制定創新法規與全球標準、鼓勵公共部門建立支持創新文化,改善服務等。 (3)提出五大戰略領域發展策略,並由「英國研究創新(UK Research and Innovation, UKRI)資金」鉅額資助,並吸引私部門企業、慈善單位共同投資。 (4)提出「支持創新技術監管建議」(Recommendations from the Pro-innovation Regulation of Technologies Review):由政府首席科學顧問群對跨領域前沿技術、先進製造、創意產業、生命科學、數位技術及綠色產業等領域提出監管建議。 (5)推動「退休基金改革措施」(Mansion House Reforms):於2023年7月10日提出,政府支持運用退休金投資創新企業,除可提高退休金持有人之收益外,亦增加新創資金流動性,並促其於英國設立公司及上市。
化學奈米 將改善人類生活為勾勒人類未來生活型態,英國將在新堡( New Castle )投入約新台幣 150 億元建立一科學城,預定五年內整合化學、奈米、微機電及醫療技術整合。這座科學城是一座整合科學及產業技術的場所,由業界及政府共同支持,科學城內將成立三大研究機構,分別進行幹細胞研究、老年人健康、分子工程,及環境能源的改善。 英國皇家工程院院士雷蒙奧立佛( Raymond Oliver F.R.Eng )是這座科學城的主要規劃人,他指出,人類生活在下一個 20 年將出現四項結構性的現象:一是人口老化,二是個人化產品的普及,三是智慧型生活空間的出現,四是再生能源出現。面對這四大現象的普及,化工業者可以找到兩個發展方向,一是利用化學來提高醫療生活品質;二是利用化學來創造更自然的智慧型生活空間。 以醫療生活品質而言,化學可以進一步和幹細胞研究結合,並透過奈米技術發展出奈米級醫療電子產品,包括影像攝影取代藥物的人體臨床實驗,或是透過紅外線體外照射,讓硫化鎘等化學藥物能在體內直接殺死癌細胞 ; 在奈米材料方面,雷蒙指出,已有廠商研究出適合老人駕駛的汽車,這類汽車從空調、氣味,到生理資訊的偵測,都能配合老人較易疲勞的體質去設計。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。