日本國土交通省公布「無人機載運貨物指引2.0」,加快物流無人機應用

  日本國土交通省(国土交通省)於2021年6月25日公布「無人機載運貨物指引2.0」(ドローンを活用した荷物等配送に関するガイドラインVer.2.0)。2021年3月公布之「無人機載運貨物指引1.0(法令編)」(ドローンを活用した荷物等配送に関するガイドラインVer.1.0(法令編))係針對涉及之相關法令進行彙整,而本次則聚焦於應用方面進行詳細說明。

  本指引首先於第一編指出,在引進物流無人機前,業者應先盤點該地區存在的課題,並確認無人機是否能有效解決該問題,接著嘗試提出具體解決方案,如拉長無人機飛行距離、增加使用次數,或建立可多次往返的飛行航道以增加使用頻率等。在初步確立無人機業務藍圖後,業者尚須設定物流無人機服務之目標受眾,並聯繫可提供貨物之商店及無人機業者,著手建立相關服務之運作模式。此外,為順利推動物流無人機服務,還需提高民眾對物流無人機之社會接受度,以獲得當地居民的理解及支持。最後,為確保飛航安全,業者除遵守本指引第二編所列相關法令飛行外,亦應制定安全飛行操作手冊,審慎評估起降地點之安全性,並建立一套安全管理系統。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 日本國土交通省公布「無人機載運貨物指引2.0」,加快物流無人機應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8697&no=55&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
歐盟執委會正式提案,授權各國決定是否開放種植基因改造作物

  歐盟執委會於7月13日正式提案,會員國得在各自領土範圍內決定准許、限制或全面禁止基因改造作物的栽種。執委會的提案內容包括對於基因改造作物與非基因改造作物的共存(在同一區域內栽種)管制建議,同時也提出修正條文草案建議供各國於修正各國內有關基因改造作物相關法律的參考。執委會的提案修正了歐盟2001/18/EC指令(Directive 2001/18/EC)使得各會員國可因地制宜考量,自行決定基因改造作物的允許栽種與否。   執委會的提案源自今年三月時對會員國的承諾。歐盟健康與消費政策委員會的主席表示,執委會此提案兌現了當時要在今年夏天結束歐盟各國對基因改造作物的爭議的承諾,此同時他也強調歐盟現行以科學為基礎的授權機制並非完全廢除,全面性的安全評估與監控系統仍繼續運作,這也是歐盟對基因改造作物耕種給予各國彈性措施的同時對安全基本把關的表現。   歐盟原有的規定訂有基因改造作物與非基因改造作物0.9%共存門檻(labellingthreshold,指由受驗作物全部基因中所含改造基因的比例判斷是否為基因改造作物的標準),各會員國必須立法採行有關措施(如作物田的間距)以符合該項要求。 但過去幾年的運作經驗發現,耕作非基因改造作物農民的潛在損失並不限於因為所產作物超過該門檻,某些案例中,基因改造有機物殘存於食品中,反而使得想要將食品以不含基因改造有機物產品販賣者造成損失。執委會新的建議案給予各國調整該共存門檻的權力,同時,各國也可以成立非基因改造專區等。2001/18/EC指令的修正條文(第26b條)將適用於所有的基因改造有機物,各國得自行決定限制或禁止其境內的基因改造作物耕種,無須執委會的授權,但須在境內措施施行一個月內通知歐盟各國及執委會。執委會的提案將在歐洲議會及歐洲理事會通過後正式施行。   對於此一即將於歐盟施行的新基因改造作物耕種規範,生技產業顯然有不同意見,依照生技業者協會EuropaBio的聲明,他們認為新規範充滿對新科學的偏見且阻礙農民的自由選擇權。基於產業的觀點,新的規範架構也有疑慮,例如:0.9%的門檻下放各國自行決定調整,往後將引起權責機關以及農民、買家、以及有關產業製造商之間的爭議;新措施也造成對歐盟內部市場的壁壘—造成歐盟境內國家的或區域的限制林立,而與歐盟的基本原則相悖;最後,對於科學的偏見與歐洲食品安全局(EFSA)的聲譽之影響也是一大隱憂。   歐盟對基因改造作物的立場一直尚未定調,新規範亦僅只是採取「下放」給各國自行決定的作法,惟實際上的運作,綜合當前對基因改造作物之安全性充滿疑慮與爭議的氛圍下,各國未來自行訂定規範將更寬或更嚴,後續發展如何有待密切觀察。

美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。   於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。   預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

歐盟法院同意嬌蘭口紅外盒設計可註冊為商標

  2021年7月14日歐盟普通法院裁定時尚品牌GUERLAIN法國嬌蘭(簡稱嬌蘭)口紅外盒形狀可註冊為商標。   嬌蘭於2018年針對其口紅外盒設計向歐盟智慧財產局(簡稱EUIPO)提出商標申請,EUIPO審查認為申請的商標缺乏識別性特徵並駁回申請;嬌蘭進而向EUIPO提出上訴,其上訴委員會維持該決定,理由為口紅立體形狀外盒設計與時尚產業領域的其他產品沒有“顯著差異”。   在上訴中,歐盟普通法院裁定EUIPO上訴委員會的決定無效。法院將嬌蘭的口紅設計與最常見的圓柱口紅形狀、平行六面體形狀進行比較,並指出嬌蘭申請的口紅外盒設計與市面上其他品牌之口紅外觀設計有明顯不同,認為該口紅外盒設計具有顯著特徵。   最終,歐盟普通法院說明判斷商標是否具有顯著性,不應該以商標在相關商品和服務所屬領域具有獨創性或未使用為依據;此外,僅僅立體形狀的新穎性和美觀特徵為主觀看法,不足以得出具有獨特性的結論,因為決定性的標準是該立體形狀可顯現出商品或服務來源的能力。同時,歐盟普通法院重申相關判定標準是嬌蘭口紅外盒立體設計方式以類似於船、搖籃或倒置金條的獨特形狀組成,明顯與時尚產業固有的口紅外盒的圓柱、平行六面體形狀設計規範和習慣大相徑庭,並且相關形狀特徵設計足以讓相關消費者藉以區辨服務來源。   在時尚品牌產業,商標本身通常不能成為區分品牌產品的唯一方式,尤其是當一個品牌提供多樣化的產品時更是難以認定具有獨特性。本案普通法院對立體形狀商標顯著特徵的認可無疑將為希望可保護其產品顯著設計元素的時尚品牌帶來曙光。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會

英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

TOP