日本國土交通省(国土交通省)於2021年6月25日公布「無人機載運貨物指引2.0」(ドローンを活用した荷物等配送に関するガイドラインVer.2.0)。2021年3月公布之「無人機載運貨物指引1.0(法令編)」(ドローンを活用した荷物等配送に関するガイドラインVer.1.0(法令編))係針對涉及之相關法令進行彙整,而本次則聚焦於應用方面進行詳細說明。
本指引首先於第一編指出,在引進物流無人機前,業者應先盤點該地區存在的課題,並確認無人機是否能有效解決該問題,接著嘗試提出具體解決方案,如拉長無人機飛行距離、增加使用次數,或建立可多次往返的飛行航道以增加使用頻率等。在初步確立無人機業務藍圖後,業者尚須設定物流無人機服務之目標受眾,並聯繫可提供貨物之商店及無人機業者,著手建立相關服務之運作模式。此外,為順利推動物流無人機服務,還需提高民眾對物流無人機之社會接受度,以獲得當地居民的理解及支持。最後,為確保飛航安全,業者除遵守本指引第二編所列相關法令飛行外,亦應制定安全飛行操作手冊,審慎評估起降地點之安全性,並建立一套安全管理系統。
本文為「經濟部產業技術司科技專案成果」
開放政府資料(Open Government Data)從2009年美國發起開放政府倡議開始,在全球颳起一陣的旋風,主張公民享有政府資料的權利。這開放資料的浪潮,在2013年由G8工業國簽署開放政府資料憲章(Open Data Charter),約定將以開放為預設(open by default)推動開放政府資料,承諾致力於開放公部門資料、以不收取費用,並採用可再利用格式提供。隨後,G20工業經濟體於2014年跟進,以推動開放政府資料做為反貪腐的利器;聯合國也同時認知,現時亟需資料革命(Data Revolution)以做為實現全球發展的目標。 然而,依據網際網路基金會(World Wide Web Foundation)繼2013年所發布的Open Data Barometer(第一版),於2015年1月再度發布Open Data Barometer(第二版),以開放政府資料的整備、落實、與影響程度三大要素,來檢視與評估86個國家於2014年間對於開政府資料推動的狀況,結果發現仍有90%的資料還是閉鎖在政府機關。 從在資料內容方面來看,僅8%的國家採用開放格式與開放授權釋出核心資料,例如政府預算支出、公共服務執行資料集等,大部分國家仍未真正釋出多數核心資料集,不然就是雖已釋出但卻很難使用;更不用提用得以打擊貪腐和促進公平競爭的資料,如公司註冊、政府契約、土地所有權資料等。在法制與政策規範面,僅17%的國家具有公民對於資料主張權利(the right to information)的相關法制,大多數國家尚未以法律或政策做為課與機關主動積極(proactive)釋出資料的義務(mandated)、實現公民對於資料主張權利的依據,而且多數國家在開放政府資料的規範與程序上,對於個資隱私的保護仍然不足,或仍處於非常不確定的狀態。 為確保資料革命達成通透度和政府的性能,Open Data Barometer研究報告提出下列關鍵步驟,提供各國政府參採: ‧由政府高層承諾將主動積極釋出公部門資料,尤其是得促進問責(accountability)的關鍵資料 ‧持續投入支援與提供培訓,使多數公民社會與企業理解與有效率地使用資料 ‧因應各國需求開發開放資料的工具和方法,例如於在識字率較低的國家,採用視覺化方式呈現資料 ‧支持地方層級開放資料的倡議,以補強國家層級開放政府資料的方案 ‧進行法規調適,以確保公民對於資料主張權利,並於開放資料倡議中加強對於個資隱私保護的基礎 網路發明者與網路基金會創始人Sir Tim Berners-Lee依Open Data Barometer的調查結果,批評政府仍持續迴避開放可用於增強問責與信任的資料,並強調開放資料的強大力量,在於資訊的權利還給公民。 備註: Open Data Barometer群組排名如下: 已開發國家 新興市場國家 開發中國家 1)英國 21)巴西 36)印尼 2)美國 22)墨西哥 39)印度 3)瑞典 33)匈牙利 46)迦納 4)紐西蘭 33)秘魯 46)盧安達 4)法國 36)阿根廷 49)肯亞
以Apple Pay服務捲入營業秘密糾紛案為例,提醒企業合作應留意的機密管控作法2025年8月6日,行動支付技術開發公司Fintiv向喬治亞州北區聯邦地方法院亞特蘭大分院控訴Apple科技公司以詐欺手段竊取Fintiv公司的前身公司CorFire的專屬行動支付技術,違反《保護營業秘密法》(Defend Trade Secrets Act,DTSA)及《喬治亞州營業秘密法》(Georgia Trade Secrets Act,GTSA)等規定,向法院尋求賠償。 Fintiv公司主張Apple公司在2011年至2012年間,以行動支付技術之業務合作為由,與CorFire公司進行多次技術性洽談。Apple公司利用雙方簽訂之保密契約,取得CorFire公司的行動支付技術的詳細實施方案之接觸權限,並要求CorFire公司上傳部分機密資料至Apple公司管理的共享平臺,以促進合作交流關係,最終Apple公司放棄與CorFire公司的合作計畫,Apple公司卻將協商期間所獲技術內容整合,並應用於其在2014年推出的Apple Pay行動支付服務。Fintiv公司進一步主張Apple公司為將Apple Pay商業化,與信用卡處理商及銀行組成企業聯盟,並隱瞞其非法取得技術的真相,宣稱Apple公司自主研發Apple Pay。Fintiv公司指出,Apple公司此舉不僅損害Fintiv公司的合法權益,也嚴重破壞市場競爭秩序。此外,Fintiv公司表示,Apple公司多年來有系統地採取類似策略,如以合作名義獲取其他企業之機密,進而不當使用多項機密以進行商業化使用。 觀察前述實務案例可得知,即使雙方基於保密契約交換機密資料,仍存在終止合作衍生的機密外洩糾紛,如:機密資料歸屬不清、逾越授權範圍使用機密資料等風險。建議企業在「資料提供前」,應先透過「盤點」營業秘密與機密「分級」,確認合適揭露的機密資料,再藉由「審查」機制確認必要揭露的內容;在「資料提供後」,要求他方提供機密資料之「收受證明」以明確歸屬,並在合作關係結束後,要求他方「聲明返還或銷毀機密資料」,以降低他方不當使用機密資料的風險。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
衛生署將推動中草藥於兩年內強制包裝標示為強化中草藥現代化,保障民眾用藥安全,行政院衛生署自民國 93 年起提出「建構中藥用藥安全環境五年計畫」,中醫藥委員會主委林宜信最近並表示,將在 2008 年前,強制全台所有飲片及傳統藥材做好符合規定的包裝及標示,標示內容包括檢驗文號、有效期限,包裝後則需符合 GMP 的規範;至於規範標準,預計會在 2008 年起推動,初期採取廠商自由心證的做法,但未來會改為強制執行。 國內中草藥可區分為科學濃縮製劑,以及傳統的飲片和傳統劑型,科學濃縮製劑透過中醫醫療院所流通,目前產值約 250 億元;一般藥店販售的飲片及傳統劑型,產值則有 300 億元以上。傳統中草藥做好包裝標示,可確保民眾用藥安全,並帶動傳統中草藥品牌加值,而要求包裝標示符合 GMO 規範,也有利進入國際市場。中醫藥委員會預估,中草藥強制包裝標示可提升中草藥產值,由 300 億元倍數成長到 1,000 億元以上的規模。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。