美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》

  美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。

  隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。

  科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。

  整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。

相關連結
相關附件
你可能會想參加
※ 美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8705&no=67&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

德國內閣公布「數位行政機關2020」 與「八大工業國(G8)開放資料宣言」行動計畫

  為執行「數位議程2014-2017」(行動領域3「創意政府」),德國內閣於9月17日分別公布出「數位行政機關 2020」與「八大工業國(G8)開放資料宣言」行動計畫。德國聯邦內政部部長de Maizère指出,此計畫的執行是為了讓公民享有行政機關更佳簡便、人性化、不受時間地點限制的服務,並且顧及到個人資安保障。   「數位行政機關 2020」旨於將德國數位政府(e-Government)法律在聯邦機關體制裏統一執行。在執行的做為中其中特別值得注意的是,以後聯邦形政體系使用的紙本檔案將全面轉換為數位版本。行政業務處理過程也將數位化、聯網化及電子化。此外、政府採購案流程也將數位化。這可幫助行政機關及企業節省行政資源。   為讓此計畫順利的執行,政府資料透明化的提升也變的格外重要。也因此,內政部長de Maizère公布針對「八大工業國(G8)簽署開放資料宣言」推出行動計畫。該計畫將政府機關的行政資料提供出來讓公民參考。依照該計畫,再明2015年4月底前,各聯邦政府機關將需提供兩個數據集(Datensatz),透過德國政府公開資料網路平台Govdata (https://govdata.de/) 公布出來。可公布出來之數據含括警察局統計之犯罪紀錄、政府建設合作案件、社會福利預算到德國國家數位圖書館資料及所有德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung)的公開資料。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

美國聯邦審計署發布先進空中交通議題研究報告,將有利於航空轉型

  美國聯邦審計署(Government Accountability Office, GAO)於2022年5月9日發布「航空轉型:經利害關係人確認之先進空中交通議題」(Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced Air Mobility')研究報告。未來,先進空中交通(Advanced Air Mobility, AAM)服務可透過小型或高度自動化(highly-automated)電動垂直起降航空器(eVTOL)翱翔於天際,不僅可提供載人或載物服務、減少交通壅塞,並可應用於救援與醫療運輸等領域。GAO透過訪談36位利害關係人,意識到AAM發展關鍵在於相關法制環境之整備速度。基此,GAO於研究報告中,整理當前各AAM新創業者於開發與落實上面臨之4大問題,分別簡述如下: (1)航空器檢定標準:美國聯邦航空總署(Federal Aviation Administration, FAA)對於航空器之檢定規範,目前尚未涵蓋具備AAM新功能之載具,如電力推進或垂直起降等。 (2)起降場與電力之基礎設施:FAA尚未制定垂直機場降落設施,及航空器電池充電需求之電力基礎設施相關標準。 (3)提高公眾載具安全性接受度:AAM產業須證明此類航空器之安全性、可靠性、低噪音與商用可行性,以支持該產業之發展與成長。 (4)作業人員所需之各種培訓與認證標準:飛行員與維修技術作業人員需接受相關新功能培訓。惟利害關係人指出可能面臨高教育成本、缺乏工作場域多樣性、機會意識(awareness of opportunities)不足,及培訓能力有限等問題。

TOP