數位創作藉由區塊鏈轉化為具獨特性之加密貨幣─非同質化代幣(non-fungible token,後稱NFT),仿佛數位創作者對創作成品簽名落款或標示出處來源,NFT也因此解決數位創作成品之來源與真偽驗證等問題,使其有如傳統的藝術作品更具收藏價值也更有利於在市場中交易,然而在此數位創作成為新型態數位收藏標的之同時,潛藏的智慧財產議題也衍生而出。
儘管NFT解決數位創作之產出來源等驗證問題,卻無法確保該NFT交易標的是否抄襲其他擁有著作權保護之創作。當收藏者轉售購入之數位創作時,便有可能構成販售侵權作品,根據美國著作權法第504條(c)項所列之賠償金額在750美元以上至3萬美元以下,甚至故意侵權賠償15萬美元。因此,如同一般傳統藝術交易,在NFT投資或收藏交易前,建議先對創作者或藝術家進行相關調查,甚至可諮詢法律顧問以確保交易標的智財狀況;此外,當交易標的屬戲謔創作時,則建議評估相對應之投資風險。
而數位創作之形式相當多元,除了數位影像、數位相片外,也含括社群媒體產出之網路迷因(meme)、虛擬圖片影像等,過去因為易於大量複製流傳而無法追溯原始創作者,如今在區塊鏈技術轉化下使前述類型之數位創作產出皆可能成為NFT交易標的。例如,今(2021)年三月美國數位藝術家Beeple於佳士得拍賣透過NFT將其作品〈每天:最初的五千天〉(Everydays: The First 5000 Days)以超過6,900萬美元的價格售出;Twitter共同創辦人Jack Dorsey以290萬美元透過NFT售出其第一則推文;此外,2011年在Youtube爆紅的像素影片〈彩虹貓〉(Nyan Cat)與2007年的英國小兄弟生活紀錄〈查理咬我的手指〉(Charlie Bit My Finger)等也透過NFT分別以超過50萬美元與超過76萬美元的金額售出。此外,根據比特幣交易所CoinDesk統計,NFT銷售額在今年上半年達到24.7億美元,反觀去年同期的1,370萬美元,NFT成了難以忽視的活絡產業。
由於起始材料(starting material)與其作用機制的複雜性,如何評估細胞和基因治療(Cell and Gene Therapy, CGT)產品的效價,並且確保產品效價有一致性,是一項複雜的工作。因應近年CGT產品的發展,美國食品及藥物管理局(U.S. Food and Drug Administration, FDA)於2023年12月28日發布《細胞和基因治療產品效價保證指引草案》(Potency Assurance for Cellular and Gene Therapy Products Draft Guidance for Industry),旨在提供廠商基於科學與風險評估的效價確保策略。 指引草案重點如下: 1.確立效價測試基準:納入2011年《細胞和基因治療產品的效價測試指引》(Potency Tests for Cellular and Gene Therapy Products Guidance for Industry)中關於效價測試設計的具體建議,包括專一性、準確性和精確性等要求。 2.建立涵蓋產品生命週期的效價保證策略:強調在整個產品生命週期中,進行效價測試的重要性,涵蓋製程設計、製程控制、物料控制與批次檢測等多個環節。 3.導入風險管理評估概念:包括根據CGT產品的作用機制、臨床指示和給藥途徑來訂定目標產品品質(Quality Target Product Profile, QTPP),確定與效價相關的關鍵品質因素(Critical Quality Attributes, CQA)、以及影響CQA的關鍵性製程因素(Critical Process Parameter, CPP)等,並應用到效價保證策略中。 依照這份指引草案,未來廠商在產品開發早期階段就需要進行產品性質與作用機制的風險評估,在製造過程中持續進行品質監控,並詳細記錄其效價測試方法。這樣能確保產品在每個生產階段都符合FDA的安全性和效價標準,從而減少市場准入的障礙,也增強了公眾對CGT產品安全性和療效的信心,加快創新治療方法的推廣,而後續亦值得關注2024年3月27日所徵集的意見。
英國強化對揭露居住地址資料保護規定英國政府於2024年12月19日依據《經濟犯罪及公司透明法》(Economic Crime and Corporate Transparency Act)的授權,發布《公司及有限責任合夥企業(資料保護與揭露及相應修訂)辦法》(The Companies and Limited Liability Partnerships (Protection and Disclosure of Information and Consequential Amendments) Regulations 2024),該辦法已於2025年1月27日生效。 根據現行《公司(地址揭露)辦法》(Companies (Disclosure of Address) Regulations 2009),經營公司之個人應登錄並公開其個人資料,包含居住地址,以利利害關係人聯繫並確保其對業務負責。但公開個人資料,將導致詐欺和身分盜用之風險,因此現行《公司(地址揭露)辦法》規定於特定情形下,如經營公司之個人曾遭受家庭暴力,或從事警察、法官、議員等職務,得向主管機關申請保護其居住地址不對外公開。新辦法將進一步強化對個人隱私之保護,允許將居住地址作為公司註冊地址之情形,亦得適用前述居住地址保護之規定。此外,對於進行清算程序的公司,經營公司之個人亦得申請不公開其居住地址,惟為兼顧第三方權益,僅得於公司清算程序開始後六個月後提出申請,以便第三方對公司提起訴訟。 隨著科技發展,對於個人資料之保護日益重要,英國此次新辦法擴大居住地址保密適用情形,設法在隱私保護與利害關係人權益間取得平衡,其細緻化地衡酌資訊透明化及個人資料保護兩項基本原則之作法,或可成為我國未來在思考相關議題之參考。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐盟提出共同策略架構以打造完整之創新研發供應鏈歐盟執委會(The European Commission)於2011年2月9日提出「從挑戰到機會:邁向歐盟研發創新補助之共同策略架構」綠皮書(Green Paper - From Challenges to Opportunities: Towards a Common Strategic Framework for EU Research and Innovation funding,以下簡稱綠皮書),以整合現有研發創新補助機制(包括FP、CIP及EIT)、改善參與容易度、增進研發之科學影響及經濟價值為目標,提出以共同策略架構(Common Strategic Framework)作為歐盟未來創新研發補助機制的構想,希冀藉此串聯基礎研究、技術服務商品化及非技術性創新等環節,以打造完整之創新研發供應鏈(innovation chain)。 歐盟共同策略架構包括了三大重點目標:1.聚焦於「提供歐盟一個世界級的科學基地」、「增進跨國間競爭」及「解決重大挑戰」;2.使歐盟研發補助更具吸引力且更易進入;3.建立更為一致的會計制度,使補助資金的使用更為容易。 歐盟綠皮書在具體作法與詳細內容上雖有待擬定,但針對現有研發補助機制之改進已提出明確方向,包括:釐清補助目標、減少法規複雜性、增進補助的附加價值與影響力,同時避免資源重覆及分散、簡化參與程序、擴大補助計畫參與、透過補助增進競爭等。此外,執委會亦已預定於2011年底提出具體立法建議,未來此一立法將為歐盟科技研發補助架構帶來如何之變革與影響,值得密切注意。