世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引

  世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則:

一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。

二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。

三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。

四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。

五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。

六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。

相關連結
※ 世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8712&no=55&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
歐盟網路和資訊系統安全局(ENISA)

  歐盟網路與資訊安全局(ENISA)成立於2004年,目的在於確保歐盟內部網路與資訊安全保持在最高水準,同時也為執行2016年8月生效之歐盟網路和資訊系統安全指令(NIS- Directive),提高歐洲的網路安全準備,以防止並抵禦網路安全事件措施。計有84名工作人員,共同運作位於希臘的兩個辦公室:Heraklion (2005年成立之總部)辦公室;與雅典辦公室(2013年成立),以提高該機構的運作效率。   ENISA在NIS指令的執行中扮演重要的角色,任務包括支援歐盟機構、會員國國與產業界,快速對網路威脅與資訊安全問題做出反應。它也被要求在執行任務中協助各國間成立的合作小組。此外,更透過指令要求ENISA協助成員國與執委會,提供他的專業意見和建議。   ENISA戰略有五個面向:     •提供關鍵網路設施和資訊安全問題之資訊和專業知識。     •制定和執行歐盟網路政策。     •建立歐盟間跨國支援能力。     •培育網路與資訊安全社群的網路演習、協調與支援。     •促進各國間的合作關係。   由於ENISA在建立之後網路發展情勢有顯著的演變,其任務和目標應該因應新發展做出調整,故歐盟執委會也在2017年1月開始重新審視其設立之法律依據以應對新情勢發展。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

英國醫學總會新指南 提醒醫師在保護病患隱私權和保護可能具有共同基因者健康之間做出衡平

  英國醫學總會(General Medical Council, GMC)在2009年9月公佈了一份有關醫師保密義務的指南(Guidance for doctors - Confidentiality),該指南針對基因檢測資訊的部份指出,病患的基因資訊和一些其他的資訊,有時也會是和病患擁有共同基因或其它連結的其他人的資訊,因為,在病患身上所診斷出來的因有缺陷基因所造成的疾病,可能也就指出了和病患有血緣關係的親屬的發病可能性,或甚至是幾乎可以確定他們未來也會發病。此時,醫師要提醒病患應該立即通知也有可能有此有缺陷基因的親屬,以期能夠協助那些親屬接受預防治療或作更進一步的檢查,對潛在的健康問題有所準備。   然而,若是病患表示了反對的意思,例如病患是來自一個破碎的家庭,和親屬的關係並不良好,或是基於其它個人的理由,所以不願意告知親屬相關有缺陷基因的風險時,則指南提醒醫師應該要自行衡量身為醫師對於保護病患所需遵守的義務,以及協助保護他人免於嚴重傷害兩者之間孰輕孰重。此外,若經過醫師的判斷之後,決定要向那些親屬告知他們所可能面對的健康風險時,醫師必須要採行不會透露病患身份的方式為之。   當然此種基因檢測資訊的通知,引起了正反兩極的評價,反對者主張此舉將嚴重侵害病患隱私權,也可能損害了醫師與病患間資訊保密的原理原則。唯贊成者則指出,許多的基因疾病,如亨丁頓舞蹈症、囊狀纖維化(Cystic fibrosis)、血友病(Haemophilia)、及乳癌(Breast cancer)等,都有著極高的遺傳性及致死率,透過此一機制所能達到的早期警告的效果,或可使得帶有相同有缺陷基因的病患親屬,能夠對潛在的健康問題及早有所準備。且若該等親屬正要或未來要透過試管嬰兒取得下一代時,亦可在執行試管嬰兒的程序中進行篩檢,防止下一代的人生繼續遭受此種有缺陷基因所帶來的疾病。

因應京都議定書生效壓力 工廠溫室氣體減量 將訂規範

  全國能源會議於六月二十日登場,面對京都議定書生效壓力,新舊工廠未來究竟應如何減量,備受企業高度關切,經濟部已擬出政策規劃,將自二○○七年開始推動既設工廠溫室氣體減量措施,至二○一五年減量一○%(二千年為減量基準年)。   工業部門溫室氣體排放量占全國排放總量五五%,但占全國 GDP 比例逐漸減少,工業局計畫在全國能源會議中,提出多項溫室氣體減量措施。   為建立產業減量機制,工業局規劃出短、中、長期三階段減量計畫外,並提出攸關溫室氣體查核機制的能源效率計算模式,藉由會議尋求共識後,逐步落實。   據瞭解,能源效率計算機制因各國規劃採取的措施不同而所有差異,有國家採用每人耗能量為計算基準,也有以生產產品所需耗能量計算,或是每創造單位國內生產毛額所需耗用的能源計算(即能源密集度)。   工業局認為,以能源密集度做為我國工業查核指標,可顯示能源消費與該產業的邊際效應變化趨勢,有助於落實工業部門減量策略的執行,因此建議我國未來在產業溫室氣體排放查核機制上,以能源密集度為查核指標。   至於,在溫室氣體減量機制上,工業局規劃我國自二○○七年時推動既設工廠實施溫室氣體減量措施,並至二○一五年時達到溫室氣體排放密集度降低一○%的目標,而其減量的基準年為二千年;在新設廠方面,則以全球一○%標竿能源效率製程的排放密集度擬訂排放標準加以審議。

TOP