世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引

  世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則:

一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。

二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。

三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。

四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。

五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。

六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。

相關連結
※ 世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8712&no=55&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
歐盟針對個人資料傳輸第三國之規範提出參考指引

  歐盟資料保護監督機關(European Data Protection Supervisor, 下稱EDPS)於2014年7月14日,針對利用雲端運算以及行動設備,將個人資料從歐盟境內傳輸至非歐盟國家之部分,提出意見書作為參考指引。EDPS通常會針對雲端業者在從事商業服務時,進行監督審查,當個人資料透過雲端運算服務進行傳輸或處理時,會由EDPS先行確認,以確保該傳輸是否符合歐盟之個人資料保護指令(Directive 95/46/EC)與規則(Regulation (EC) No 45/2001)之規範。   有鑑於跨境合作或使用傳輸服務等需求,歐盟境內將個人資料傳輸至第三國或國際組織之情形日益劇增,此參考指引之主要目的在於詳加解釋歐盟資料保護規則(Regulation (EC) No 45/2001)中關於國際間個人資料傳輸之規定以及應該如何適用。   首先,該指引針對何謂個人資料傳輸以及歐盟資料保護規則第9條之範圍做出說明,後續則分別就適當保護之意涵,以及由歐盟執委會基於規則第9.5條之規定依權限得決定第三國是否已達適當保護標準之國家等部分加以論述。最後,該指引則提供確認表,在資料傳輸前應經過一定的確認流程,包括確認資料接收的國家或組織是否已有適當的保護層級,若無,則是否尚有其他資料可證明。如上述皆無法證明,則應考慮是否有例外情況,例如:取得資料所有人同意得進行傳輸、資料所有人與資料控管者因契約約定同意傳輸、資料控管者與第三人因契約約定,基於資料所有人之利益而傳輸、基於重要公益事由或其他法律上之事項必要傳輸、基於保護資料所有人之重要利益而傳輸、基於資料提供於大眾而傳輸等。倘缺乏以上例外情形,則可考慮資料控管者是否得援引自己已經具備適當的安全機制而可進行資料傳輸。最後,如無任何安全之保護,則資料將無法進行傳輸至第三國。   綜上,歐盟針對資料傳輸予第三國之部分做出更詳細之說明作為參考指引,使資料之傳輸與流通更有明確的規範方向,其後續適用之成效為何應可持續觀察。

美國聯邦準備理事會、FDIC與OCC發布聯合聲明,提醒關於加密資產流動性風險

有鑑於加密資產(crypto-asset)投資交易潛在風險與市場波動性,美國聯邦準備理事會(Federal Reserve Board)、聯邦存款保險公司(Federal Deposit Insurance Corporation, FDIC)與通貨監理局(Office of the Comptroller of the Currency, OCC)於2023年2月23日發布聯合聲明,提出加密資產增加銀行流動性風險情境,例如穩定幣因市場狀況之變動,導致銀行擠兌使大量存款流出,由於存款流入和流出的規模與時間的不可預測性,加密資產相關資金恐造成流動性風險提高,提醒銀行機構應用現有的風險管理原則審慎因應。 依據聲明內容,有效風險管理作法包括:(1)了解加密資產相關實體存款潛在行為的直接和間接驅動因素,以及這些存款易受不可預測波動影響的程度;(2)銀行機構應積極監控加密資產資金來源存在的流動性風險,並建立有效的風險管理控制措施;(3)應與加密資產存款相關的流動性風險納入應變計劃(contingency funding planning),例如流動性壓力測試;(4)評估加密資產相關實體存款之間關聯性。該聲明並強調銀行機構應建立風險管理機制及維持適當有效之內部控制制度,以因應加密資產高流動性風險,確保經濟金融穩健發展。

自動駕駛車輛之分級與責任

  所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。   而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。   德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。   故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。   修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。

大倫敦政府提倡倫敦城市資料市集

大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。

TOP