2021年7月中旬,日本經濟產業省(下稱經產省)發布《促進資料價值創造的新資料管理方法與框架(暫定)(データによる価値創造(Value Creation)を促進するための新たなデータマネジメントの在り方とそれを実現するためのフレームワーク(仮))》之綱要草案(下稱資料管理框架草案),並公開對外徵求意見。
近年日本在「Society5.0」及「Connected Industries」未來願景下,人、機器與科技的跨界連接,將創造出全新附加價值的產業社會,然而達成此願景的前提在於資料本身須為正確,正確資料的自由交換,方能用於創造新資料以提供附加價值,因此正確的資料可說是確保網路空間連結具有可信性的錨點。為此,經產省提出資料管理框架草案,透過資料管理、識別資料在其生命週期中可能發生的風險,以確保資料在各實體間流動的安全性,從而確保其可信性。
該框架將資料管理定義為「基於資料的生命週期,管理各場域中資料屬性因各種事件而變化的過程」,由「事件(資料的產生/取得、加工/利用、轉移/提供、儲存和處置)」、「場域(例如:各國家/地區法規、組織內規、組織間的契約)」和「屬性」(例如:類別、揭露範圍、使用目的、資料控制者和資料權利人)三要素組成的模組。經產省期望未來能透過三要素明確資料的實際情況,讓利害關係人全體在對實際情況有共同理解的基礎上,能個別確保適當的資料管理,達成確保資料正確之目的。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
為促進綠色轉型並提高對投資人之保護,歐洲銀行監理機關(European Banking Authority, EBA)、歐洲保險與職業年金監理機關(European Insurance and Occupational Pensions Authority, EIOPA)及歐洲證券與市場監理機關(European Securities and Market Authority, ESMA)於2024年6月18日針對永續金融揭露規則(Sustainable Finance Disclosure Regulation),向歐盟執委會(European Commission)發布共同意見。 現行的永續金融揭露規則於2019年制定並於2021年生效,其目的在提高金融產品服務的 ESG 揭露透明度和標準化,透過要求金融市場參與者提供可靠且可比較的 ESG 資料,使投資者能夠做出更明智的投資決策,引導投資人重視環境與永續議題。現行的永續金融揭露規則係以「商品標籤」之方式揭露金融商品資訊,但共同意見中認為此標籤制度並未提供明確標準或門檻,使投資人無法充分了解為何特定商品具有永續性,導致漂綠(greenwashing)及相關投資風險。 因此,本次共同意見向執委會建議,執委會應建立投資人易於理解且具有客觀標準之金融商品類別,解決上述資訊落差疑慮。共同意見建議,金融機構可採用「永續(sustainable)」與「轉型(transition)」兩項金融商品類別。以下簡介共同意見就兩項金融商品類別提供之建議: 一、永續類別 永續類別係指金融商品投資於已達到環境或社會永續門檻之經濟活動或資產。共同意見提及,執委會或可考慮將永續類別再拆分為環境永續類別與社會永續類別;但若拆分兩項類別,可能必須注意目前環境永續與社會永續兩項類別得參考之指標發展程度不一,未來在訂定門檻時如何確認相關指標需進一步討論。 二、轉型類別 轉型類別係指金融商品投資於尚未達到環境或社會永續門檻,但未來將逐步提高其永續性以達到永續類別門檻之經濟活動或資產。共同意見建議,執委會於訂定轉型類別之門檻時,應參考經濟活動分類標準之關鍵績效指標、轉型計畫、商品減碳路徑及減緩主要不利影響之措施等因素。 目前執委會正評估利害關係人意見及永續金融揭露規則實施經驗,作為改善歐盟永續金融制度之依據,因此共同意見亦建議,執委會應先進行消費者調查,再著手後續規則修訂,方能達到制度優化之成果,保障投資人權益及永續發展。
陳總統:打造台灣成亞太生技營運中心陳水扁總統表示,行政院推動「加強生物技術產業推動方案」,將在5年內帶動1500億元投資、10年內成立500家以上生技公司,打造台灣成為亞太地區生技創投、研發以及營運中心。他期盼中研院基因體研究中心大樓加中研院頂尖研究團隊,如同承載台灣「兩兆雙星」中生技之星的「子彈列車」,引領台灣生技產業超越各國,奔馳在世界最前端。 陳總統表示,本世紀人類基因體序列的解碼,開創並主導了生技產業革命性的發展,展望未來,生命科學家所面臨的挑戰,將更著重於瞭解基因的複雜性、以及解析蛋白質結構與功能,並藉此發展新的生技醫療產品,以改良人類生活及生命品質。 有鑑於「基因與蛋白體研究」是全球廣泛重視的尖端科學,陳總統說,政府自2002年即進行「基因體醫學國家型計畫」,在各地籌建基礎設施和研發中心,而「中研院基因體研究中心」正是推展計畫的核心工程。他相信,這項重大投資將提供一個健全的研發環境及專業技術平台,協助台灣的生技產業掌握市場利基,進而落實行政院在「加強生物技術產業推動方案」中所訂定各項發展目標。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。