美國財政部外國資產控制辦公室更新發布與勒索軟體支付相關之制裁風險諮詢

  美國財政部外國資產控制辦公室(The US Department of the Treasury’s Office of Foreign Assets Control, OFAC)於2021年9月21日更新並發布了與勒索軟體支付相關之制裁風險諮詢公告(Updated Advisory on Potential Sanctions Risks for Facilitating Ransomware Payments)。透過強調惡意網絡活動與支付贖金可能遭受相關制裁之風險,期待企業可以採取相關之主動措施以減輕風險,此類相關之主動措施即緩減風險之因素(mitigating factors)。

  該諮詢認為對惡意勒索軟體支付贖金等同於變相鼓勵此種惡意行為,故若企業對勒索軟體支付,或代替受害企業支付贖金,未來則有受到制裁之潛在風險,OFAC將依據無過失責任(strict liability),發動民事處罰(Civil Penalty制度),例如處以民事罰款(Civil Money Penalty)。

  OFAC鼓勵企業與金融機構包括涉及金錢存放與贖金支付之機構,應實施合規之風險管理計畫以減少被制裁之風險,例如維護資料的離線備份、制定勒索事件因應計畫、進行網路安全培訓、定期更新防毒軟體,以及啟用身分驗證協議等;並且積極鼓勵受勒索病毒攻擊之受害者應積極聯繫相關政府機構,例如美國國土安全部網路安全暨基礎安全局、聯邦調查局當地辦公室。

相關連結
相關附件
你可能會想參加
※ 美國財政部外國資產控制辦公室更新發布與勒索軟體支付相關之制裁風險諮詢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8736&no=64&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標

  2017年6月9日,日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標,藉由第四次產業革命,包括IoT、大數據、人工智慧及機器人等創新產業,具體解決每個人都會面臨的社會課題(例如少子高齡化)。「未來投資戰略2017」內容包含四個面向,分別為Society 5.0戰略領域、Society 5.0橫向課題、建構區域經濟的良好循環系統及海外成長市場納入等。 一、Society 5.0戰略領域:針對健康壽命的延伸、移動革命的實現、次世代供應鏈、舒適的基礎建設與城市規劃以及FinTech金融科技。 二、Society 5.0橫向課題:分為創造價值泉源及建構價值最大化兩部分。創造價值泉源方面,分別提出數據活用的基礎與制度建構、教育及人才強化、創新與風險的良好循環系統;建構價值最大化方面,則有監理沙盒的創設、規範改革.行政手續簡化.IT化的整體推進、「賺錢力」的強化──從形式到實質的企業治理改革、公共服務與資產的民間開放、國家戰略特區的加速推進、網路安全以及共享經濟之相關政策等。 三、建構區域經濟的良好循環系統:中小企業與小規模事業的革新並活化服務產業與提升生產力、農林水產業的強化與展開以及觀光.體育.文化藝術的實行。 四、海外成長市場的納入:基礎建設系統輸出、經濟合作交流、連接數據流通活用與形成國際共通規則、中小企業的海外支援、日本魅力活化政策。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

醫療物聯網(The Internet of Medical Things, IoMT)

  醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。   就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。   由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。

日本創設搭載遠距型系統自駕車基準緩和認定制度

  日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。   「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。

TOP