美國俄亥俄州推出「個人隱私法草案」

  2021年7月13日,美國俄亥俄州(下稱俄州)副州長Jon Husted宣布推出《俄州個人隱私法》(Ohio Personal Privacy Act, OPPA,下稱本法),這是美國近期最新州級別的個人隱私保護法草案,並提出企業可資遵循隱私標準俾該州消費者隱私之保護。

  首先,本法草案除賦予該州消費者知悉權、近用權、刪除權外,更賦予資料銷售退出權(right to opt out sales)及不受歧視權(right to discrimination)。並於俄州境內規範三種企業:(一)年營收逾2,500萬美元;(二)單一年度內經手10萬名以上消費者個資;(三)年營收半數源自於個人資料銷售且經手2.5萬名以上消費者個資。

  惟所稱企業,排除如:州立機關或機構、受管制之金融機構及其附屬單位、實體或關係組織、高等教育機構等;至所稱消費者個資,則排除如:法規保護之個資(如健康資訊及紀錄、病患辨識資訊、人類受試者之個資及相關資訊、病患安全工作成果、個人信用等)、依法(如駕照法、家事法、醫療法及本法等)所得個資或依法授權得使用於公衛之資訊等。

  特別的是,如企業違反本法,消費者並無獨立訴訟權,其執法權專屬州總檢察長。因此,如本法日後通過並施行,無論對俄州企業抑或消費者權益之影響,均有待觀察。

相關連結
相關附件
你可能會想參加
※ 美國俄亥俄州推出「個人隱私法草案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8740&no=86&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定Uber違反《Data Protection Act 1998》資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定知名共享公司Uber未能在網路攻擊期間保護客戶的個人資料,故處以罰款385,000英鎊。   ICO調查發現Uber的諸多過失,包含系統存有一系列原可避免的數據安全漏洞,使得攻擊者可透過Uber美國母公司旗下所營運的雲端儲存系統,下載大約270萬筆英國客戶個人資料,例如全名、電子郵件及電話號碼等。該事件亦影響了Uber在英國8萬多名司機的相關營運紀錄,如旅程詳情及支付金額。然而,受影響的客戶和司機竟達一年多未被告知此個資外洩事故。相反的,Uber反而向攻擊者妥協並支付了10萬美元,以銷毀被盜取的數據。   ICO認為,這不僅為Uber資料安全之問題,且當時未採取任何措施通知可能受影響的人,或對其提供任何協助,已完全忽視受害客戶和司機之權益。而對攻擊者支付贖金後即保持沉默,亦非對於網路攻擊之適當反應,Uber未完善的數據保護措施,以及隨後的決策與行為,反將可能會加劇受害者權益的受損。   因此,ICO認為該事件已嚴重違反了英國1988年資料保護法(Data Protection Act 1998, DPA)第7條的原則,有可能使受影響的客戶和司機面臨更高的詐欺風險,故從嚴判處Uber高達385,000英鎊罰款。

雲端運算所涉法律議題

  雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。   雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。   雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。

歐盟生醫研究積極籌組歐盟研究基礎設施聯盟(ERIC)

  歐盟自2009年6月通過並於同年8月生效之「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EC) No 723/2009 of 25 June 2009 on the Community legal framework for a European Research Infrastructure Consortium (ERIC),簡稱第723/2009號規則),其乃希望能促進各會員國間各自分散的研究基礎設施(Research Infrastructures,簡稱RIs)之資源凝聚及共享,讓原本僅為設施設備的RIs整合起來,透過由3個以上歐盟會員國作為某特定ERIC成員之方式,依第723/2009號規則向歐盟執委會提出ERIC設立申請,經執委會同意後,ERIC即可取得獨立法律地位及法律人格,以自己名義獲得、享有或放棄動產、不動產及智慧財產,以及締結契約及作為訴訟當事人,並得豁免無須被課徵加值稅(value added tax)和貨物稅(excise duty)等稅賦。歐盟創設ERIC法律架構之目的,是希望能透過國際合作、彙集國際資源,在歐盟建立起頂尖研發環境,吸引跨國研發活動集中與進駐,利用規模化的大型研究基礎設施導引出世界級研發。   截至目前,由奧地利、比利時、捷克、德國、荷蘭等國作為成員及瑞士作為觀察員所建立之「歐盟健康、老化及退休調查」(The Survey of Health, Ageing and Retirement in Europe,簡稱SHARE),乃是歐盟首次提出申請且正式設立之ERIC。SHARE-ERIC乃一大型的人口老化多國研究資料庫,並已收錄45,000筆以上年齡50歲以上個人之健康、社經地位及社會家庭網絡之跨領域及跨國籍資料,SHARE-ERIC之資料分析除將有助歐盟國家就老化社會之福利系統為規劃,更預期將成為推動其活動及健康老化歐盟創新伙伴試行計畫之重要基石。   除此之外,自2008年起由歐盟撥款500萬歐元籌備成立之「生物銀行及生物分子資源研究基礎機構」(Biobanking and Biomolecular Resources Research Infrastructure,簡稱BBMRI),從2008年至今(2011)年1月底3年籌備期間,已募得30個以上國家之53個會員聯盟以及280個聯繫組織(大部分為生物銀行),預計將建立成為最大的泛歐生物銀行,病患及歐盟人口之樣本與資料之介面,以及頂尖生醫研究之介面,且為了要BBMRI-ERIC,BBMRI指導委員會業已擬定「BBMRI-ERIC備忘錄」提供予有興趣之會員國家簽署,希望能在今年底前成立BBMRI-ERIC。

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP