全球創新指數顯示創新活動在疫情期間仍持續增長

  今(2021)年10月發布的2021年全球創新指數(GII)報告反映了創新如何塑造和維持世界的運作,最明顯的例子就是COVID-19疫苗的快速發展。此外,數位創新也提供了公部門和私部門應對大流行病浪潮的解決方案,例如接觸者追踪工具、應用程序和診斷方法等。

  實際上在2020年9月,也就是COVID-19被宣佈為大流行病的六個月後,第13屆年度GII就預測了未來一年的研發支出將保持強勁。儘管大流行病造成了毀滅性的人員傷亡和經濟衝擊,但研發支出、智慧財產權申請和創業投資(VC)交易都在大流行病前的高峰上持續增長。

  在2021年的GII報告中提到,在全球研發支出前2,500名的企業中,約有70%已發布了2020年的研發支出數據,從數據中可發現在2020年整體大約有10%的研發支出增長,且大約60%的企業聲稱其研發支出增加。在智慧財產權方面,向世界智慧財產權組織(WIPO)提交的國際專利申請在2020年創下歷史新高。2020年專利申請在醫療技術、製藥和生物技術呈現明顯增長,與前幾年形成鮮明對比,當時數位通信和電腦技術是增長最快的領域。與健康相關領域的專利活動反映了大流行病期間科學活動的持續增長,且鑑於最近醫療保健與加速數位化的研發突飛猛進,可以預期這些領域的專利申請將在未來幾年繼續強勁增長。

相關連結
※ 全球創新指數顯示創新活動在疫情期間仍持續增長, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8748&no=55&tp=1 (最後瀏覽日:2026/01/08)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

開放非銀行事業從事預付式行動付款服務法制議題之研究

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

印度競爭委員會因廣義平價義務條款裁罰網路旅行社

印度競爭委員會(Competition Commission of India, CCI)於2022年10月19日以違反競爭法(Competition Act)第3條及第4條規定,涉嫌協議限制競爭與濫用市場地位,分別對兩家網路旅行社(online travel agents, OTAs)—MakeMyTrip India Private Limited和Ibibo Group Private Limited(合稱MMT-Go)裁罰22.348億及16.888億印度盧比(約為2600萬和2029萬美金),並要求MMT-Go修改與合作飯店之間的「廣義平價義務條款」,CCI認為「廣義平價義務條款」可能會限制競爭,具有市場地位的業者施行可能造成壟斷,需要個案認定是否違反競爭法。MMT-Go向國家公司法上訴法院(National Company Law Appellate Tribunal, NCLAT)提起救濟,NCLAT於2023年2月23日宣布將對CCI的裁罰進行審理,預計於4月11日舉行庭審。 「平價義務條款」在OTAs和合作飯店間相當常見,是為了要解決搭便車問題,防止飯店從中獲取不公平利益,而平價義務條款分成「狹義」與「廣義」。「狹義平價義務條款」禁止飯店在飯店自身網站以更好的價格與條件進行銷售,因只限制飯店在本身銷售管道的條件,並不影響OTAs之間的競爭。而「廣義平價義務條款」則禁止飯店在其他銷售管道以更好的價格和條件進行銷售,此將減少OTAs之間的競爭。當具有市場地位的OTAs與飯店簽訂「廣義平價義務條款」,因其更為低廉的價格與市場地位,其競爭對手無法與之公平競爭,可能產生壟斷。 此外,歐盟可能有同樣的看法,歐盟委員會於2022年5月新修訂「垂直集體豁免規則」(Vertical Block Exemption Regulation, VBER)將廣義平價義務條款從豁免範圍中刪除,但仍豁免狹義平價義務條款。因為廣義平價義務條款可能限制競爭或造成壟斷,印度與歐盟對於廣義平價義務條款已經做出限制,可能是未來競爭法的國際趨勢,可以作為我國未來相關法規調適之參考。

TOP