2022年2月4日英國智慧財產局(以下簡稱IPO)發布的2022至2027的智慧財產打擊侵權戰略,主要著重於智慧財產的保護,打擊智慧財產侵權行為,以保護英國企業的智慧財產。
有鑑於智慧財產侵權/犯罪被視為低風險高回報的侵權行為,此次發布的智財戰略,主要在於強化英國原有的智慧財產執法機制,著眼於對於智慧財產現今與未來所會面對的挑戰,可著重於三大主軸,包含建立夥伴關係,與其他國內外夥伴合作,將智慧財產執法資源進行整合,建立打擊智慧財產侵權的網絡;發揮領導效用,透過與夥伴的合作,強化其他國家打擊智慧財產犯罪的能力,確保英國企業的智慧財產在海外亦受到充分保護;教育提升,藉由與夥伴的合作,一起展開有效的智慧財產活動,減少智慧財產侵權行為,以及消費者認識智慧財產犯罪和侵權的行為,避免無意間捲入侵權行為中。
除以上三大主軸之外,該戰略並採用於打擊組織犯罪所用的4Ps方法,包含預防(prevent)、保護(protect)、準備(prepare)和追查(pursue),以確保跨部門合作可被有效執行。
該戰略並不是針對現行智慧財產侵權/犯罪問題提出解方,而是針對智慧財產的長期所需,試圖建立一個基本框架,確保透過公私合作關係(包含國內合作與國際合作)解決智慧財產侵權/犯罪結構,使英國企業更有信心將資源投入在創新上。
新加坡智財融資計畫介紹 科技法律研究所 法律研究員 羅育如 2014年12月23日 壹、前言 新加坡政府於2013年3月份提出IP (Intellectual Property) Hub Master Plan 10年期計畫[1],目標是成為亞洲智慧產權匯流中心。本文針對其中的智財融資計畫(IP Financing Scheme;IPFS)進行觀察,目的在於了解新加坡政府如何運用政府資源,協助建構智財交易市場。 貳、重點說明 新加坡政府2014年4月18日公布總值為1億新元(約24億新台幣)的智財權融資計畫,以協助新加坡本地的企業通過所持有的智財權獲得銀行的融資。 根據這項計畫,新加坡智財局將委託新加坡三家智財鑑價機構,為那些擁有智財權的企業進行鑑價,而相關企業則可以智財權為抵押,向參與本計畫的三家當地銀行—星展銀行(DBS Bank Ltd)、華僑銀行(Oversea-Chinese Banking Corporation (OCBC) Ltd)和大華銀行(United Overseas Bank (UOB) Ltd)申請企業貸款,用以擴展企業業務。 而新加坡智財局將依據不同企業貸款的申請情況,以計畫經費承擔部分違約風險,對於企業的智財資產融資負擔連帶責任(the Government partially underwrites the value of IP used as collateral)。須強調的是,該項計畫的申請資格需符合兩個標準:1.必須是新加坡企業;2.擔保品必須包含已獲證的專利。其餘具體推動作法,介紹如下: 一、申請流程 智財權融資計畫的申請流程分為三個步驟[2],首先必須向任選三家融資銀行的其中一家提出初步評估申請。接著則從三家合格之專門鑑價服務公司中,挑選適合的IP鑑價師,針對要作為擔保品的已獲證專利,進行價值評估。最後,該申請企業再將專業鑑價報告以及融資申請書,提交給融資銀行作審查。 二、合格之專業鑑價機構 如欲成為融資銀行可接受之合格智財權鑑價服務公司,必須通過新加坡智財局的評選機制,參加評選的公司必須符合以下四個條件: 1.在專利鑑價領域至少五年經驗。 2.過去曾替營業額500萬新元(約一億兩千萬台幣)的企業進行過智財鑑價。 3.曾經評鑑過至少100萬新元(約2400萬台幣)智財價值的案件。 4.每年的營業額最少為100萬新元(約2400萬台幣)。 目前通過評選之合格鑑價服務公司包括American Appraisal Singapore Pte Ltd(地點在新加坡)、Consor Intellectual Asset Management(地點在美國)以及Deloitte & Touche Financial Advisory Services Pte Ltd(地點在新加坡)。換言之,除上述三家公司外,融資銀行將不接受其他公司提供之智財權鑑價報告。 三、智財鑑價費用補助 新加坡智財局會補助欲申請智財權融資計畫之企業智財鑑價費用,但前提條件是,申請企業必須獲得通過融資審查,並提取100%獲准貸款之後,政府才會補助智財鑑價費用,而補助費用計算方式有三種選擇,政府從中選擇較低金額作為補助費用,包括: 1.50%智財鑑價費用。 2.該項智財價值2%。 3.新幣2.5萬(約60萬台幣)。 參、事件評析 一般而言,銀行不接受智財資產作為企業融資的擔保品,因為智財資產無明確的交易以及流通市場,當企業無法依約償還貸款時,銀行無法買賣智財擔保品,取回資金。 為了解決這個根本性的問題,新加坡政府透過智財融資計畫,直接提供資金挹注,協助銀行承擔智財融資風險,使企業可透過智財資產實質的取得資金,一方面讓企業更加願意投注智財相關費用,因為智財產出除了可用於內部製造與創新之外,還可以成為融資擔保品,協助企業取得資金。另一方面則可活絡智財交易市場,因為雖然政府承擔部份銀行風險,但智財交易市場還是會因為有需求而慢慢浮現。 [1] IP STEERING COMMITTEE, Intellectual Property (IP) Hub Master Plan─Developing Singapore as a Global IP Hub in Asia (2013) http://www.ipos.gov.sg/Portals/0/Press%20Release/IP%20HUB%20MASTER%20PLAN%20REPORT%202%20APR%202013.pdf(最後瀏覽日2014/10/15) [2] Intellectual Property Financing Scheme, ipos.gov, http://www.ipos.gov.sg/IPforYou/IPforBusinesses/IPFinancingScheme.aspx(last visited Oct. 15, 2014).
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國參議員力推再生能源投資稅額扣抵法案為鼓勵再生能源科技研發之投入,並確保美國人民能持續享有穩定之電力供給來源,同時增加更多的工作需求機會,美國參議員相繼於今年10月31日和11月10日提出Make it in America Tax Credit Act, S. 1764和Storage Technology for Renewable and Green Energy(STORAGE) Act, S. 1845兩個再生能源投資稅額扣抵法案。 在當今清潔能源技術(clean energy technology)之研發重要性與日俱增的趨勢下,為活絡與刺激美國清潔能源製造產業的成長,美國參議員期待透過S.1764這項法案的通過,額外投注美金5億元於先進製造者稅額扣抵計畫(Advanced Manufacturers Tax Credit program),進而達成強化清潔能源產業發展之目的,同時提供美國境內相關產業市場更多工作機會。另外,為克服再生能源如太陽能和風力等發電方式所具有的不確定性(如風力未達可發電標準等),如何儲存此類綠色能源之技術研發乃為現今各界戮力強化的領域。為集結並鼓勵更多研發資源投注於能源儲存系統(energy storage systems)的研發,美國參議員乃進而提出STORAGE Act,提供以下兩項優惠措施,包括:1. 能源製造商於投入與電網相關之能源儲存系統研發時,得享有20%之投資稅額扣抵(investment tax credit, ITC),其最高上限為美金4億元;2. 裝設商業和家用儲存系統時,得享有30%的投資稅額扣抵,其最高上限為美金1百萬元。 儘管目前上述兩法案仍於美國參議院財政委員會(Senate Finance Committee)進行法案審查,然而在各界對於能源產業儲存技術之提升與促進產業發展的期盼、法案所能帶來更穩定的電力供給與有效儲存再生能源等誘因之下,委員會的審查結果確實已引起各界的關注與期待。
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。 日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。 新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。 在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。 將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。 再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。 再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。 從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。 依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。