2022年2月4日英國智慧財產局(以下簡稱IPO)發布的2022至2027的智慧財產打擊侵權戰略,主要著重於智慧財產的保護,打擊智慧財產侵權行為,以保護英國企業的智慧財產。
有鑑於智慧財產侵權/犯罪被視為低風險高回報的侵權行為,此次發布的智財戰略,主要在於強化英國原有的智慧財產執法機制,著眼於對於智慧財產現今與未來所會面對的挑戰,可著重於三大主軸,包含建立夥伴關係,與其他國內外夥伴合作,將智慧財產執法資源進行整合,建立打擊智慧財產侵權的網絡;發揮領導效用,透過與夥伴的合作,強化其他國家打擊智慧財產犯罪的能力,確保英國企業的智慧財產在海外亦受到充分保護;教育提升,藉由與夥伴的合作,一起展開有效的智慧財產活動,減少智慧財產侵權行為,以及消費者認識智慧財產犯罪和侵權的行為,避免無意間捲入侵權行為中。
除以上三大主軸之外,該戰略並採用於打擊組織犯罪所用的4Ps方法,包含預防(prevent)、保護(protect)、準備(prepare)和追查(pursue),以確保跨部門合作可被有效執行。
該戰略並不是針對現行智慧財產侵權/犯罪問題提出解方,而是針對智慧財產的長期所需,試圖建立一個基本框架,確保透過公私合作關係(包含國內合作與國際合作)解決智慧財產侵權/犯罪結構,使英國企業更有信心將資源投入在創新上。
標準必要專利(standards-essential patents,SEPs)是國際標準組織所採行的一種專利運用模式,主要係為了使標準共通技術普及之同時平衡專利權人之利益,將技術發展中重要的標準共通技術結合專利保護,同時均要求專利權人須簽署FRAND(Fair,Reasonable and Non-discriminatory)條款,以公平、合理、無歧視之原則收取合理數額之專利授權費供標準化組織成員有償使用。然而,因專利本身即是一種合法壟斷,是以標準必要專利之授權模式可實現利益最大化;但涉及到具高度共通性又難以迴避的技術時,應當避免少數專利權人濫用專利權和市場壟斷。因此,專利權人和被授權人之間,對於收取合理專利授權費之議題,在一直無法取得共識之下,往往訴諸法律解決。從美國聯邦法院涉及標準必要專利侵權之訴訟案例,可看出美國針對標準必要專利目前主要有下列幾種趨勢:(1)合理之專利授權費以該技術佔產品元件之比率計算;(2)標準必要專利之授權費金額逐步降低;(3)專利權人必須先進行授權流程(4)不能直接申請禁制令。
布拉格提案(The Prague Proposals)2019年5月3日,來自全球30多國的政府官員與來自歐盟、北大西洋公約組織的代表於捷克布拉格所舉辦的5G資安會議(Prague 5G Security Conference)中,強調各國建構與管理5G基礎建設時應考慮國家安全、經濟與商業發展等因素,特別是供應鏈的安全性,例如易受第三國影響之供應商所帶來的潛在風險,本會議結論經主辦國捷克政府彙整為布拉格提案(The Prague Proposals),作為提供世界各國建構5G基礎建設之資安建議。 在這份文件中首先肯認通訊網路在數位化與全球化時代的重要性,而5G網路將是打造未來數位世界的重要基礎,5G資安將與國家安全、經濟安全或其他國家利益,甚至與全球穩定等議題高度相關;因此應理解5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,則為強調確保5G基礎建設的供應鏈安全。 因此在布拉格提案中強調各國建構通訊網路基礎建設,應採用國際資安標準評估其資安風險,特別是受第三國影響之供應商背後所潛藏之風險,並應重視5G技術變革例如邊緣運算所產生的新風險態樣;此外對於接受國家補貼之5G供應商,其補貼應符合公平競爭原則等。布拉格提案對於各國並無法律上拘束力,但甫提出即獲得美國的大力肯定與支持。
國際能源總署發布「擴大轉型金融」報告,旨在說明如何透過金融機制協助高碳排部門邁向淨零國際能源總署(International Energy Agency, IEA)於2025年10月16日發布「擴大轉型金融」(Scaling Up Transition Finance)研究報告,提出轉型金融應與綠色金融作為能源轉型的互補工具,並進一步分析轉型金融的前景與推動建議。 轉型金融是指有助於減排的金融活動,特別適用於難以減排的產業及資金需求高、但綠色金融支持有限的新興市場及發展中經濟體。報告重點分析轉型金融三大領域,並說明各產業投資方向即可量化的減碳目標,重點如下: (1)重工業:鋼鐵及水泥業合計約占全球能源燃燒與製程排放之14%,主流投資仍集中於傳統高碳排製程,導入轉型金融,除可支援中短期減碳措施外,亦能鼓勵企業於設施設計階段預留導入低碳技術之條件(即具「可改造性」,retrofit-ready),避免產生「高碳資產鎖定」與「無法回收之投資風險」。IEA建議,應結合國家層級減碳指標與產業路徑,將轉型金融納入減碳政策框架,並鼓勵金融機構明確區分綠色金融與轉型金融投資組合。 (2)關鍵原物料:原料開採與冶煉雖屬能源轉型必要條件,但亦產生排放量高、高耗水量、土地劣化與生物多樣性流失、及社會與治理風險。轉型金融則可支持低排放技術、改善ESG表現,並促進高影響力投資。IEA建議,應建立礦業轉型金融標準與績效指標;政府與多邊開發銀行應提供保證或融資機制;加強資料透明與監測機制;統籌國際供應鏈治理與稅收誘因。 (3)天然氣:IEA強調,轉型金融可協助天然氣產業減排改造,並推動替代性低碳氣體基礎建設發展,但不得成為長期依賴化石燃料之藉口,因此應用優先順序應為甲烷減量、液化天然氣減排、低排放氣體基礎設施、電力系統調節角色。且必須符合透明性、時限性及一致性等條件。其目的在於支援能源轉型初期之電力穩定與彈性,並為未來低碳氣體基礎設施鋪路。 轉型金融強調企業與金融機構的實質合作,當前挑戰在於擴大資金流與明確界定「轉型」特質。IEA建議,推動轉型金融須兼顧新興市場與中小企業參與,並強化產業別績效指標、改造潛力設計及定期審查。此外,轉型金融應提升為全球減碳融資之第二支柱,藉此面對難以減排之領域,並確保投資帶來實質減碳與能源安全等效益。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)