歐盟執委會於2021年12月8日宣布「軟體開源授權及複用」決定(COMMISSION DECISION on the open source licensing and reuse of Commission software)。本決定規範執委會軟體之開源授權條件與複用方式,其軟體開源授權流程如下:
一、執委會依本決定(下同)第5條授予其軟體的開源授權證應為歐盟公共授權(the European Union Public Licence, EUPL),除因(1)適用第三方軟體的互惠條款,而強制使用其他開源授權證,或替代開源授權證比EUPL更便於人民使用該軟體;(2)適用第三方軟體之授權條款,存在多個開源授權標準(不含EUPL),則應優先選擇授予最廣泛權利的開源授權。
二、透過第8條對智慧財產權進行核實,包括:(1)軟體識別(2)對軟體的智慧財產權進行驗證;及(3)安全驗證。
三、依第6條規定將所有開源軟體置於資料庫,供公民、公司或其他公共服務有潛在利益者取得。
另外,依第四條規定,本規則不適用於以下情形:(1)因第三方智慧財產權問題,無法允許複用的軟體;(2)該原始碼之發布或共享,對執委會、其他歐洲機構或團體的資訊系統或資料庫安全構成實質或潛在風險;(3)因法律規定、契約義務或性質,其內容須被視為機密之軟體;(4)依(EC)1049/2001第4條所列之情形,包含但不限於:因公共利益、國家安全、隱私保護、商業利益、訴訟或審計之利益等,該軟體須被排除,或只能由特定之一方取得或管理;(5)委託由執委會進行研究產生之軟體,若公開將干擾臨時研究結果之驗證或構成拒絕註冊有利於執委會之智慧財產權的理由。
本文為「經濟部產業技術司科技專案成果」
美國資安事件頻傳,美國 8/30 驚傳電信及電報公司( AT & T )購物網站中之顧客消費資料遭駭客竊取事件。 AT & T 發言人表示工程師在發現異狀後一個小時內關閉該網站並已採取相關保護措施,據 AT & T 估計約 1 萬 9 千名在該網頁上以信用卡消費的顧客機密資料已外流,目前該公司正進行通知客戶之動作,並聯繫相關信用卡公司,期能將對顧客之損害降至最低。 AT & T 通知當事人之作法,符合美國立法之趨勢。目前美國除了部分州已經通過立法要求資料持有業者必須將資料外洩事件告知當事人外,今年 7 月 19 日 Virginia 州議員 Thomas Davis 亦提出美國聯邦法典第 44 編( title 44 )修正提案,該提案通過後將強化美國聯邦法典中對於個人資料外洩時資料收集者之告知義務,以避免當事人因此蒙受損失。 雖然法規要求漸趨嚴格、完整,但長期關注隱私權問題之 Privacy Rights Clearinghouse 估計,美國自去年 2 月起至今年 8 月底止,約有 9100 萬人次之機密資料遭到竊取,換言之,約 1/3 的美國人機密資料曾遭竊取或外洩,網際網路與駭客技術的發展使得機密資料今日已不再機密了。
「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例 研發成果下放就不適用國有財產法嗎?研發成果下放就不適用國有財產法嗎? 資訊工業策進會科技法律研究所 2020年3月26日 科學技術基本法(下稱科技基本法)下放研發成果予執行單位,授權各部會機關按其對研發成果管理運用的需求,彈性制訂該部會之科學技術研究發展成果歸屬及運用辦法(下稱成果運用辦法)。然據悉某些公立學校或公立機關(構)曾在盤點財產時,因漏未將研發成果登入為國有財產,或列帳時未列載相關費用而遭主計處指正,從而對研發成果是否為國有財產及如何適用國有財產法有所疑問。因此,本文先回歸科技基本法,探討國有財產法之適用範圍,再論成果運用辦法和國有財產法間互補適用的關係,以解答上述疑問。 壹、科技基本法排除國有財產法適用之範圍 按科技基本法第6條第1項及第2項[1],當研發成果歸屬於公立學校、公立機關(構)或公營事業等公部門單位時,僅排除適用國有財產法中保管、使用、收益及處分之規定,改由各部會之成果運用辦法規範,故當研發成果歸屬於公部門時,並非完全排除適用國有財產法,係僅於前揭特定管理運用事項適用科技基本法及其授權訂定之成果運用辦法。因此其他未被排除的國有財產法規定[2],包括何謂國有財產與國有財產種類之總則、國有財產登記、設定產籍與維護,以及有關國有財產之檢查與財產報告等仍須依循相關規範。前述遭主計處指正之案例,或許就是忽略歸屬於公部門之研發成果仍有前揭國有財產法之適用,致漏未將研發成果依該法登入國有財產或將相關支出列帳。 貳、成果運用辦法的適用範圍 另一可能造成執行單位在運用其研發成果時產生疑問的原因,是現行各部會之成果運用辦法中,有部分規定與前述科技基本法第6條第2項,將歸屬於公立學校與公立機關(構)之研發成果定性為國有財產之意旨扞格。以衛生福利部科學技術研究發展成果歸屬及運用辦法(下稱衛福部成果運用辦法)為例,雖然按該辦法第2條第5款定義國有研發成果為研發成果歸屬國家所有者。然該辦法第30條第1項第1款[3],卻出現執行單位為公、私立學校、公立研究機關(構)之「非國有」研發成果收入之上繳交比率規定,恐使適用本辦法之公立學校、公立機關(構),誤以為其所有之研發成果可為非國有,而產生無庸適用國有財產法之誤解,亦與該辦法第2條第5款對國有研發成果的定義產生內部矛盾,更與科技基本法第6條第2項相衝突。 當研發成果歸屬公立學校、公立機關(構)時,因上述公部門單位本即為政府機關(構),故歸屬上述單位等同歸屬於國家,凡屬上述單位所有之研發成果即為國有研發成果,也會適用國有財產法;邏輯上不應出現公部門單位擁有非國有研發成果之情況,顯然衛福部成果運用辦法第30條第1項應修正第1款,將非國有研發成果上繳比率規定之適用主體排除公立學校、公立研究機關(構)。 參、結論 現行科技基本法第6條第1項與第2項,使研發成果是否適用國有財產法,會因為其歸屬而有不同。研發成果歸屬於公部門者為國有財產原則上應適用部分國有財產法,例外於特定管理運用事項始適用各該部會的成果運用辦法;而研發成果歸屬於私部門者非國有財產,無國有財產法之適用,僅適用各該部會辦法管理。在這套體制下,執行單位須注意國有研發成果仍是國有財產,仍須依國有財產法進行財產列帳、登記及財產檢查;而出現規定公立學校、公立研究機關(構)「非國有研發成果」條文之成果運用辦法, 則顯與現行科技基本法有違,反致生誤會,建議進行修正。公立學校與公立研究機關(構)在進行研發成果之管理、運用時,除依循各部會成果運用辦法外,應注意科技基本法的意旨,以避免造成被認為未依法處理之情況。 [1]科技基本法第6條第1項及第2項:「政府補助、委託、出資或公立研究機關(構)依法編列科學技術研究發展預算所進行之科學技術研究發展,應依評選或審查之方式決定對象,評選或審查應附理由。其所獲得之研究發展成果,得全部或一部歸屬於執行研究發展之單位所有或授權使用,不受國有財產法之限制。前項研究發展成果及其收入,歸屬於公立學校、公立機關(構)或公營事業者,其保管、使用、收益及處分不受國有財產法第十一條、第十三條、第十四條、第二十條、第二十五條、第二十八條、第二十九條、第三十三條、第三十五條、第三十六條、第五十六條、第五十七條、第五十八條、第六十條及第六十四條規定之限制。」 [2]未被排除而應適用的國有財產法條為:第1條到第8條總則、第9、10、12、16條之管理機構、第17條到第19條國有財產登記、第21條到第24條設定產籍、第26條有價證券保管處所、第27條之損害賠償責任、第30、31條不動產維護、第32、34條公用國有財產之使用和非公用國有財產之變更、第37條受贈財產,第38到41條非公用財產撥用、收益、第42到44、45條不動產與動產出租、第46到48條不動產與動產之利用,處分第49到55條不動產與動產標售、第59條非公用財產之估價、第61到63條財產檢查、第65到70條財產報告、第71到73條之刑責和舉報獎金、第75到77條之施行日期等。內文未提及之其它未排除適用的條文,主要是針對有體物,即動產與不動產的相關規範,和非公用國有財產之管理;而研發成果多為無體財產,即智慧財產權等,且多為公用財產,故使用這部分條文的情況較少,在此不贅述。 [3]衛福部成果運用辦法第30條第1項第1款:「執行單位因管理及運用其非國有研發成果之收入,應依下列規定辦理:一、執行單位為公、私立學校、公立研究機關(構)者,應將其研發成果收入之百分之二十繳交本部。」
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)