全球多個國家目前正在促進企業推動「環境、社會和公司治理」(Environment, Social Responsibility, Corporate Governance, ESG)事務,以瑞士為例,有關ESG的新法規於2022年1月1日正式生效。
在2022年1月1日生效的提案中,主要是對《瑞士債法典》(The Swiss Code of Obligations, CO)提出修正,包含「涉及公共利益(public interest)的企業應提出ESG事項報告」與「企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查(Due Diligence)」,分別說明如下:
一、公共利益企業應提出ESG事項報告
依《瑞士債法典》第32章新增的第6節「非財務事項之透明度」(Transparency on Non-Financial Matters)規定,符合條件的上市公司或受監管實體等公共利益企業,每年應提出一份單獨的非財務事項報告,內容須涵蓋環境事項、社會問題、員工相關問題、尊重人權和打擊腐敗等議題,以及公司對該等議題所提出的政策措施、風險評估和實施績效等資訊。此報告經企業內部最高管理層與治理機構批准後,須立即於網路上公開,並確保至少十年內可供公眾存取。
二、企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查
依《瑞士債法典》第32章新增的第8節「與來自受衝突影響地區的礦物金屬以及童工相關的盡職調查和透明度」(Due Diligence and Transparency in relation to Minerals and Metals from Conflict-Affected Areas and Child Labour)規定,所在地、總部或主要營業地點位於瑞士的企業,如在瑞士自由流通或加工來自受衝突影響和高風險地區(conflict-affected and high-risk areas)的特定礦物或金屬,抑或產品或服務被合理懷疑是使用童工製造或提供而成,原則上即須遵守供應鏈中的盡職調查義務,每年亦應將其遵守情況編制成報告。此報告應在會計年度結束後的六個月內於網路上發布,並確保至少十年內可供公眾存取。
台灣、美國與日本因為歐盟所徵收進口機頂盒、平板顯示器以及多功能列印三項科技產品的高進口關稅,於8月19日正式向世界貿易組織(WTO)爭端解決小組(Panel)提出成立一個爭端解決小組的請求。 WTO會員國於1996年針對特定的高科技產品簽署禁止課稅的「資訊科技協議」(WTO Information Technology Agreement,簡稱ITA),歐盟也同意依WTO關稅時程表取消「資訊科技協定」中所約定產品的關稅。然而,歐盟目前對進口的機頂盒課徵13.9%、平板顯示器14%以及對多功能列印機6%的高進口關稅。美國的貿易談判代表Susan Schwab表示,歐盟對所承諾事項相悖的行為,不僅違反1994年關稅及貿易總協定第2條,並有礙資訊科技產業的技術創新發展。該不公平的進口關稅,事實上也影響相關業者與消費者的權益。 依照複邊簽定而在次年生效的ITA協定,該協定下產品應為零關稅。但歐盟自前年起,以稅則附註等法規,將部分平面顯示器、具硬碟的機上盒及多功能事務機等新技術科技產品,以功能增強或有新功能為由,歸類為家電產品,排除適用同一協定。WTO爭端解決機構(The WTO dispute settlement body,簡稱DSB)將會於 8 月29日召開會議時對本爭端案件進行討論。
谷歌,蘋果商談競標已破產的柯達專利根據華爾街日報報導指出,蘋果及谷歌將聯合競標柯達公司所釋出的專利組合。 在智慧型手機市場上蘋果和谷歌互為競爭對手,原訂在柯達專利拍賣案中,兩家企業提出1億5仟萬美元至2億5仟萬美元金額進行競標活動,改協議採合作結盟競標方式,以較低的金額獲得柯達的專利。 華爾街日報引據熟悉此項談判之人士指出主要電子產業公司,如Samsung(三星)、LG(樂金)及HTC(宏達電),及其他以透過購買專利作為投資或保護公司營運為目的之企業亦有參與。 柯達為規劃重新成為印刷領域的專業,需藉由販賣其所擁有的1,100件數位影像專利以籌措資金,在今年年初,柯達評估所有專利價值為26億美元(21億歐元) 而柯達對外發布買方非常踴躍於此次競標活動中,但目前尚未可以公布結果,將無限期限地延長拍賣時間,主要柯達是希望蘋果及谷歌能在所釋出的專利中,進行一場專利競標的競賽。
美國商務部發佈智財權活動對美國經濟影響之綜合報告美國商務部發佈智財權活動對美國經濟影響之綜合報告 科技法律研究所 法律研究員 曾文怡 101年5月16日 壹、事件摘要 美國商務部於今年3月發佈一份委由其所屬之「經濟統計局(Economics and Statistics Administration,ESA)」和「美國專利商標局(United States Patent and Trademark Office,USPTO)」共同執行的調查報告:「智慧財產和美國的經濟:產業焦點(Intellectual Property and the U.S. Economy: Industries in Focus)」。 報告除界定所選研究標的313種行業別中,共75種被認定為「智財密集型行業(IP-intensive industries)」;而這些「智財密集型行業」為美國帶來至少4千萬筆就業機會、超過5兆美元產值,佔美國GDP高達34.8%。 貳、報告重點摘要 一、「智財密集型產業」的篩選 此報告採用美國USPTO相關的行政數據,用以確認(identify)最密集利用商標、專利所提供的保護之行業;著作權方面,則係以是否主要為創作或生產受著作權保護素材,加以認定。以標準統計方法用以確認(identify)哪些美國行業(industries)是最具專利、商標及著作權密集型(intensive),並統稱為「智財密集型產業」。 (一)以該行業平均每人擁有專利數認定專利密集型行業 美國使用各美國行業標準分類 (North American Industry Classification System, NAICS) 於2004-2008這五年間的專利總數與該行業的平均就業人口的比例來測量行業的專利密集型: Measure of industry patent “intensity” = total patents over the five years in a NAICS category / average payroll employment by industry 就業人口能夠展現一個行業的大小,並確保各行業在比較時是公平的 (even playing field) 。最具專利密集型的行業並不是擁有最多專利,而是在該行業一個職位有最多專利 (patents per job) 。若專利/職位比例高於所有行業的平均值,則該行業將被認定為專利密集型的行業。 (二)以商標登記數統計資料認定商標密集型行業 有鑑於一個商標通常會同時登記於好幾個不同的類別下,因此在此統計的方式將以類別為單位,而非商標。美國使用了3種方式來認定商標密集型的行業 (three-pronged approach) : 1.平均每人擁有商標數密集的行業 比照專利的方式,以商標登記與行業就業人口比例來測量商標密集性,首先過濾出屬於上市公司的商標登記,並比對該公司公開資訊中 (Compustat 資料庫 ) 的主要產業及員工人數,因為Compustat資料庫有包含公司的NAICS行業類別,如此就可以取得行業的商標登記數及就業人口數並計算該行業之比例。 2.前50家商標登記最多企業 (Top 50 Trademark-Registering Companies) 利用USPTO發佈的前50家商標登記最多企業名單 ( 不同於第一種方式將包含上市與非上市公司 ) ,並利用付費的OneSource資料庫找出這些企業的 NAICS 行業類別,並統計各行業在前50家企業名單中出現的次數,一個行業出現超過5次以上將被認定為商標密集型。 3.隨機取樣 (Random Sample of Trademark Registrations) 從2010年所有在登記的商標隨機抽樣300件,其中196件為美國公司申請登記,針對這196家企業試圖找出其NAICS行業類別,行業類別若有超過5筆商標登記,將被視為商標密集型。 上述三種方式總共產出60個商標密集型行業,同時使用三種方式係希望能夠彌補一種方式可能有的缺點,例如商標密集型方式可能會低估某些產業或忽略到較小型或沒有上市的企業,這部分由第二種及第三種方式試圖彌補。 最後被認定出為商標密集型的行業也與Interbrand的品牌排行作比較 (Best Global Brands in 2010) ,以確認被認定為最具品牌價值的企業是否屬於商標密集型的行業,此研究找出品牌排行中的企業的NAICS行業類別,並與之前被認定為商標密集型的行業作比對,發現具相當的重疊性。 二、以WIPO核心著作權產業標準界定著作權密集型行業 美國有關著作權產業的界定,主要根據WIPO於2003年發佈之「著作權產業經濟貢獻調查報告(Guide on Surveying the Economic Contribution of the Copyright-based Industries)」以及 Stephen Siwek 發表之「著作權產業對美國經濟之影響報告(Copyright Industries in the U.S. Economy)」。亦即,報告採用WIPO所界定之「核心著作權產業(core copyright industries)」作為其認定何謂「著作權密集產業」的基礎,再將單純只以銷售(distribution)受著作權保護客體為目的之行業加以排除。 三、「智財密集型產業」是驅動美國經濟發展的重要引擎 根據報告,「智財密集型產業」在2010年的產值超過5兆美元,佔美國GDP高達34.8%;同年「智財密集型產業」的貨物出口總金額約7億750萬美元,佔全部貨物出口總額的60.7%。另外,智財密集型的國際服務貿易相關數據資料雖有限,但研究者仍發現在2007年,智財密集型的國際服務貿易約佔全美民營企業服務貿易額的19%。 四、「智財密集型產業」提供至少 4 千萬個就業機會 2010年全美至少有4千萬筆工作,是直接或間接與「智財密集型行業」相關,佔所有工作機會的27.7%。其中直接相關者的從業人數約2,710萬人,佔所有工作機會18.8%;而與「智財密集型行業」間接相關的從業人數約1,290萬人。換句話說,每2個與「智財密集型行業」直接相關的就業機會,就帶來1個額外的工作機會。 五、「智財密集型產業」薪資待遇、教育水準優於其他行業 「智財密集型產業」的平均週薪在2010年為1,156美元,高出其他民營產業別的815美元約42%。其中又以專利及著作權密集產業的薪資成長幅度較高,專利密集行業的薪資從2005年的66%,成長到2010年的73%;著作權密集行業的薪資從2005年的65%,成長到2010年的77%。 而相對高的薪資待遇又與IP密集型行業的教育背景有關。據2010年的統計資料,超過42%的25歲從業人員係具有大專院校學歷,高於其他非IP密集型行業的34%。 參、事件評析 一、我國應建立智財密集行業界定標準並建立數據資料庫,以利掌握產業智財發展動向 智財法令可以保護發明者、創作者免於盜版之害,鼓勵其持續創新,維持競爭優勢,並確保智財權交易、流通市場得以順利運作。但智財保護的界線設定,也相對的影響創新、創意是否有足夠的發展空間,一套經過衡平設計的智財權,影響國家產業經濟甚鉅。 然而如何設計出衡平的法令,並非只須單純的以正義公理做邏輯推論,同時也須仰賴大量統計資料的數據分析,以調查實際運用情形,才能在智財保護體系分寸拿捏之際有所依據。美國商務部的報告開宗明義便指出,必須透過大量數據資料的分析,方能掌握智財在所謂的「智財密集型行業」所扮演的角色。 我國目前在建立智財相關數據資料庫面向,基礎建設不足,無法分析預估產業的發展趨勢及經濟特性,亦不能評估智財對於我國經濟的貢獻程度影響,肇致智財相關政策的立論說明欠缺實證,實應立即著手整備建置相關數據資料庫。 二、推動著作識別碼與存證登記並建立誘因,是評估我國著作權密集型產業經濟貢獻統計分析模式的核心措施 全球經濟發展重心已轉移到音樂、影視、遊戲等文化創意產業,權利別亦跳脫專利權而與著作權息息相關。從韓國等國家智財戰略的方向亦可發現,有賴政策擬訂與相關推動措施,實現以著作權為核心的產業結構。 但從報告中可看出,相較於專利、商標,著作權相關的數據資料較為不足。究其原因,或與著作權採創作保護主義,毋須進行註冊、登記程序有關。由於我國著作權法亦採創作保護主義,且未有存證登記管道,建議可參酌美國、韓國、中國大陸等著作權法與權利登錄有關之規定,並提供登錄者相關誘因,作為我國著作權產業相關統計指標及資料庫之基礎。 而除規劃推動著作物登記制度外,為降低網路侵權對產業經濟造成損害,應一併研議著作物來源識別機制,利用單一著作物內容識別碼,來協助交易雙方經由識別碼查證著作物之來源與權利歸屬,降低著作權授權之風險。同時開發追蹤非法重製物流通之系統,協助權利人進行侵權證據之蒐集與保全,以健全的著作權交易機制,作為發展我國文創軟實力之後盾。 三、確保研發創作者的智財受到有效保護,是促進創新活動、智財交易流通、帶動經濟發展的根本基礎 此報告於一開始即特別指出,專利、商標及著作權提供企業和個人創作者,將無形的發明、創意轉化為實質經濟利益之法律基礎,而一個國家的智財保護機制將連帶影響其整體經濟的商業活動,包括:提供驅動發明、創作的誘因、保護創新者免於未經授權之利用、促進技術市場之垂直分工、媒合資金與創新活動、透過併購及首次公開發行股票 (IPO) ,支援創業初期階段企業資產的流動性及成長、實現以技術授權為基礎的商業模式、促使技術移轉市場與技術及創意交易市場得以更有效率的運作。 為保護研發創作者的權益,國外已有許多國家採取積極主動的措施,例如:韓國為維護韓國業者著作權海外交易秩序及提升交易雙方的信賴,於2012年1月11日指定其所屬的韓國著作權委員會(Korea Copyright Commission)作為著作權認證業務之專責機關,負責推動著作權認證制度。於今年以輸出海外市場 ( 中國等 ) 之音樂、電影、電視劇等內容,作為第一階段著作權認證對象,並提供免手續費之優惠。韓國著作權委員會並設置數位著作交易所 ( 網站 ) ,著作 ( 權 ) 人可將其著作之權利相關資訊登錄至數位著作交易所的「著作權資訊管理系統 (Copyright Integrated Management System,簡稱 CIMS) 」上,CIMS就會給予該著作一組ICN識別碼,讓公眾便於取得授權。韓國文化體育觀光部與特許廳也分別開發有非法重製物及仿冒品之線上追蹤系統,由該二套系統主動蒐集、分析相關侵權資料後,協助權利人交由檢調相關單位採取管制措施。 但回頭檢視我國情況,同樣面臨降低著作權交易可能衍生紛爭之需求,卻沒有著作權官方存證管道,更遑論給予著作權認證制度與重製物及仿冒品之線上追蹤協助。未來著實應該借鏡韓國作法,規劃推動符合我國產業發展需求的著作權保護機制。 報告原文:The full report can be found online at http://www.uspto.gov/news/publications/IP_Report_March_2012.pdf
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)