2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。
本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。
Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。
企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。
飛利浦推出新授權機制,光碟片廠仍有所質疑繼2001年引起國內科技產業界關注的公平會處分飛利浦CD-R授權案、2004年7月28日智慧局依循專利法第76 條規定,做成CD-R技術之強制授權決定,准予國碩公司針對飛利浦公司五項專利權所提出的強制授權申請後,飛利浦與台灣光碟片廠的權利金拔河仍未停歇,近日飛利浦宣布,將推動全新的CD-R光碟片專利授權模式—Veeza,根據此一授權模式,每片CD-R光碟片的授權金降幅高達44%。 飛利浦認為Veeza有助於恢復產業競爭的公平性,台灣光碟片卻不這樣認為,首先台灣最主要的競爭對手印度MBI,因飛利浦在印度沒有專利權保護,當地生產的光碟片出貨並不用繳納權利金。另外大陸業者也不按照規定繳交權利金,故即使調降權利金,我國廠商仍認為一旦與飛利浦簽訂新契約,屆時反而更加綁手綁腳,更無法與印度與大陸廠商競爭,市場公平競爭性反而降低,故截至目前為止,並沒有任何一家台灣光碟片廠與飛利浦簽訂新契約。
全球Open Data成功及挑戰之關鍵報告根據全球資訊網基金會(World Wide Web Foundation)及英國開放資料協會(Open Data Institute)指出,全球77個國家正進行Open Data政府開放資料政策,但實際運作上,各國政府提供公眾近用之資料集佔不到全世界政府資料的10%,呈現各國Open Data政策實行還有很大進步空間。 全球資訊網基金會與英國開放資料協會所合作的網絡平台-政府開放資料研究網絡(Open Data Research Network),針對各國政府開放資料執行狀況進行評比並提出Open Data Barometer研究報告。此報告指出,英國政府開放資料執行及成效排名第一,其次排名陸續為美國、瑞典、紐西蘭、丹麥、挪威。除此之外,專以倡導開放知識、資料、內容的國際非政府組織,開放知識基金會(Open Knowledge Foundation),則提出基於Open Data可用性及近用性進行70個國家的排名,英國仍是第一名,其次為美國、丹麥、挪威、荷蘭。從上述兩項研究報告中,英國在Open Data政策落實的成效受到高度肯定,而歐美地區仍在Open Data政策實行上領先世界其他地區的國家。 Open Data Barometer研究報告指出,目前各國政府傾向不提供具潛在爭議性的政府資料,但此類資料往往具再利用價值,例如政府財政預算及交易資料、公司登記、土地登記等相關資料。全球資訊網創始人Berners Lee表示,政府及企業不應考量提供資料集而無法收取費用,或有意掩蓋政治敏感之資料來保護政治利益,而對於公布會造就人民生活的重大進步但具爭議性之資料集,感到卻步。 目前多數國家開放資料之機器可讀性資料與資料集之免費授權(Open License)皆少於7%,報告中說明全球資料集實際可用性仍偏低,亦發現各國提供資料之收費不僅沒有效率,資料再利用授權關係也不明確,使得企業及使用者處在法律不確定之風險中。 全球面對開放資料的進展雖已有初步成效,但成功經驗仍集中在歐美國家,世界上其他國家在開放資料的可用性及近用性,仍與歐美國家有顯著差距,為能促進全球人民生活福祉及活絡商機,各國政府應更積極地執行開放資料政策,並持續改進。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。