日本數位廳(デジタル庁)與內閣府智慧財產戰略推進事務局(内閣府知的財産戦略推進事務局)於2022年3月4日公布「平台資料處理規則實務指引1.0版」(プラットフォームにおけるデータ取扱いルールの実装ガイダンス ver1.0,簡稱本指引)。建構整合資料提供服務的平台,將可活用各種資料,並創造新價值(如提供個人化的進階服務、分析衡量政策效果等),為使平台充分發揮功能,本指引提出平台實施資料處理規則的六大步驟:
聯合國人權高級專員辦公室(Office of the United Nations High Commissioner for Human Rights, OHCHR)於2021年9月15日發布《數位時代隱私權》(The Right to Privacy in The Digital Age)調查報告,分析各種人工智慧技術,例如側寫(profiling)、自動化決策及機器學習,將如何影響人民之隱私或其他權利,包括健康權、教育權、行動自由、言論自由或集會結社自由等,並提出對國家與企業應如何因應之具體建議。 一、針對國家與企業使用人工智慧之共同建議:在整個人工智慧系統生命週期中,包括設計、開發、部署、銷售、取得(obtain)或運營,應定期進行全面的人權影響評估(comprehensive human rights impact assessments),提高系統使用透明度與可解釋性,並應充分通知公眾與受影響之個人其正在使用人工智慧進行決策。 二、針對國家使用人工智慧之建議:應確保所有人工智慧的使用符合人權,明確禁止並停止販售不符合國際人權法運作之人工智慧應用程序。在證明使用該人工智慧系統能遵守隱私及資料保護標準,且不存在重大準確性問題及產生歧視影響之前,應暫停在公共場所使用遠端生物識別技術。並盡速立法及建立監管框架,以充分預防和減輕使用人工智慧可能造成不利人權的影響,以及確保在侵犯人權時能夠有相關之補救措施。 三、針對企業使用人工智慧之建議:應盡力履行維護人權之責任,建議實施商業與人權指導原則(Guiding Principles on Business and Human Rights),並打擊(combat)人工智慧系統開發、銷售或運營相關的歧視,進行系統評估與監測,以及設計有效的申訴機制。
日本印章制度與電子署名法修正日本國會於2021年2月9日正式提出「數位社會形成基本法草案」(デジタル社会形成基本法案),立法目的為提升國家競爭力、國民生活便利性,以建置一個「數位社會」,基本原則為降低數位落差,而降低數位落差之重要手段即包括日本印章制度之改革。 日本政府對印章制度之改革,可分為「取消蓋章制度」及「增加電子簽章使用率」二條路線。由於新冠疫情(COVID-19)影響全球工作型態,日本政府為推動電子化服務,考慮取消印章使用,因為其徒增商業活動成本,亦可能提升染疫風險。日本行政改革大臣河野太郎在2020年11月13日內閣會議後之記者會上即表示,約1萬5000種需要使用印章的行政服務中,絕大多數將取消蓋章制度。「數位社會形成基本法草案」亦預告將修改48部要求使用印章之法律,本草案及相關修法將於2021年9月正式通過施行。 電子簽章使用方面,日本在野黨聯盟於2020年6月提出「電子署名及認證業務法一部修正草案」(電子署名及び認証業務に関する法律の一部を改正する法律案)。依照現行規定,電子簽章須本人以一定方式簽署始可推定為真正,推定真正之條件過度嚴苛,便利性未優於實體蓋章,致使電子簽章使用普及度低落。本草案則降低推定門檻,僅須以特定電子方式簽署即有推定真正效力,使電子簽章簽署人身分驗證更為容易。目前法案仍在眾議院提案階段,尚未經國會表決通過,後續發展值得關注。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
京都議定書效應 核電乾淨能源鹹魚翻身京都議定書實施後,號稱最乾淨能源的核電,反而有利於環境;而台灣燃煤電廠密度列世界前茅,是否有必要再檢討「非核家園」政策,值得觀察。 調查顯示,美國除了將要提前除役的核電廠延役外,芬蘭、韓國、日本都有建新核電廠的計畫,中國大陸更將以一年一座核電的速度,持續到 2020 年,美國奇異公司、法國、甚至韓國都有意分食這塊大餅,就連台灣反核的師法對象德國,都有改弦易轍的打算。 另外,根據國際原子能委員會推估, 2020 年前全球將有超過 60 座的核電廠上線運作,將全球核電廠的數量推升到 500 座,這些核電廠大多分布在亞洲。 目前台灣燃煤發電廠密度名列世界前茅,不論是二氧化碳及汞汙染都十分嚴重,面對京都議定書,燃煤電廠勢必不能再增加,不必將核能發電排除在未來選項中。面對京都議定書所造成的新論點,及國際能源不斷上漲的新趨勢,台灣在六月份全國能源會議中該訂定新的能源比例,不必特別排除核能發電,並發展再生能源,另外,在鼓勵汽電共生政策中,該特別鼓勵天然氣電廠,以減少燃煤電廠比例不斷上升。