日本修訂《建築節能法》,加強住宅、建築物之節能措施

  日本政府為實現2050淨零碳排目標,內閣於2022年4月22日公布《建築物のエネルギー消費性能の向上に関する法律》(譯:有關建築物能源使用效率提升的法律,下稱本法)修正案,加強住宅、建築物之能效提升措施。本次修正內容,主要包含:

  1. 擴大本法適用對象
    因本法現僅規範大型規模建物(面積2,000平方公尺以上)及中型規模建物(面積300平方公尺以上,未滿2,000平方公尺);故修正案定2025年起,將所有新建的小型規模建築(面積未滿300平方公尺)及住宅均納入本法規定,不僅要求外牆和屋頂需增厚隔熱材質,並應使用高能效的空調及照明設備,以符節能標準。
  2. 擴大領先者計畫(Top Runner program)
    以淨零耗能住宅(Zero Energy House, ZEH)及零耗能建築(Zero Energy Building, ZEB)為目標,最遲到2030年逐步提高實施節能標準。
  3. 實施節能裝修融資政策
    國土交通省為促進既有建築物節能改造及鼓勵引進太陽能發電的新機制,將由住宅局編列預算,透過日本住宅金融支援機構(Japan Housing Finance Agency, JHF)辦理節能裝修低利息融資。

相關連結
※ 日本修訂《建築節能法》,加強住宅、建築物之節能措施, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8838&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
日本政府內閣於今年3月提出個人資料保護法修正草案

  為因應2016年正式上路實施之社會保障與納稅人識別號碼制度(社会保障・税番号制度)對於個人資料保護所產生之影響,日本政府內閣於2015年3月10日於國會提出個人情報保護法之修正案。   此次修正案主要分有六大重點,包含個資定義擴充與明確化、確保個資文件內容之正確性、強化個資保護規範內容、設立個人情報保護委員會、個資情報處理全球化,以及其他修正事項如未得當事人同意之第三人使用個資條件嚴格化等。   其中主要有兩項係與社會保障與納稅人識別號碼制度相關。首先是強化個資保護規範內容部分,由於社會保障與納稅人識別號碼制度將遇有個資資料庫使用情況,故新增個資資料庫之相關規範與罰則,行為人於未經授權或不當使用個資資料庫時,將可處1年以下拘役併科日幣50萬元以下之罰金,亦即當行為人違反個資法有關個資資料庫規定時,不但須支付罰金也須負刑事責任。   其次,擬設立直屬內閣總理大臣所轄之個人情報保護委員會,其委員組成人選須經參眾兩議院同意後,由內閣總理大臣任命之。委員會主要任務在於專責監督與監測政府各機關以及民間個資處理事業對於個資的傳遞、處理,並適時提出指導意見或建言。

加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢

加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。

數位內容通路商收購相關支援技術

  數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。   隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。

日本公布資料管理框架,促進資料加值應用

  日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。   工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。   工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。

TOP