歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙

  歐盟執委會(European Commission)於2022年5月3日發布「歐洲健康資料空間」(European Health Data Space, EHDS)規則提案,其旨在克服健康資料利用之障礙,以充分發揮數位健康與健康資料之潛力。EHDS為一個專門用於健康之資料共享框架(health-specific data sharing framework),針對患者以及用於研究、創新、政策制定、患者安全、統計或監管目的等電子健康資料之運用,建立明確規則、通用標準與實務、基礎設施與治理框架,無論是個人、醫療人員、健康照護提供者、研究人員、監管人員、產業界皆可由此受益。

 

  EHDS之具體內容主要包括九個章節:

(1)第一章為一般條款(General provisions),內容包括本規則之主題與範圍,並闡明定義、以及與其他歐盟法規之關係;

(2)第二章為電子健康資料之原始利用(Primary use of electronic health data),其針對歐盟一般資料保護規則(GDPR)所載權利,增訂補充性之配套保護機制,並設定醫事人員及其他健康從業人員針對EHD之義務;

(3)第三章為EHR系統與福祉應用(EHR systems and wellness applications),其主要重點為EHR系統之強制性自我認證計畫(mandatory self-certification scheme),要求其需符合可互通性與安全性等基本要求,並界定EHR系統中各經濟營運商(economic operator)之義務、EHR系統合規(conformity)要求,並負責EHR系統市場監督機構之義務;

(4)第四章為電子健康資料之二次利用(Secondary use of electronic health data),如將資料用於研究、創新、政策制定、患者安全或監管活動。本章定義一組資料類型,規範可利用之既定目的以及受禁止之目的(如商業廣告、增加保險、開發危險產品),並規定會員國必須建立健康資料近用機構(health data access body),以便電子健康資料的二次利用,並確保由資料持有者所產生之電子資料可提供給資料使用者;

(5)第五章為其他行動(Additional actions),其旨在提出其他措施以促進會員國之能量建構(capacity building),以配合EHDS之發展,包括數位公共服務之資訊交換、資金,並規範於EHDS下非個人資料之國際近用規定;

(6)第六章為歐洲治理與協調(European governance and coordination),其創建「歐洲健康資料空間委員會」(European Health Data Space Board, EHDS Board),促進數位健康當局及健康資料近用機構之間的合作,特別是電子健康資料之原始與二次利用間之關係,並包含歐盟基礎設施聯合管理小組(joint controllership groups for EU infrastructure)相關規定,其任務在於就電子健康資料之原始與二次利用所需之跨境數位基礎建設進行相關決策;

(7)第七章為授權與委員會(Delegation and Committee),其允許歐盟執委會通過關於EHDS之授權法案(delegated acts),並希望根據C (2016) 3301號決定成立一個專家小組,以便於準備授權法案、實施本規則時提供建議與協助;

(8)第八章為附則(Miscellaneous)規定,其中包含關於合作與處罰之規定,以及要求於本規則實施後進行評估與檢視之條款;

(9)第九章為延遲適用與最終條款(Deferred application and final provisions),其規定本規則與個別條款之生效日。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8858&no=67&tp=1 (最後瀏覽日:2025/11/17)
引註此篇文章
科法觀點
你可能還會想看
澳洲於9月初生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government)

2024年9月1日,澳洲生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government,下稱政策)。澳洲數位轉型局(Digital Transformation Agency,以下稱DTA)提出此政策,旨於透過提升透明度、風險評估,增進人民對政府應用AI的信任。 1. AI之定義 此政策採經濟合作暨發展組織(OECD)之定義:AI系統是一種基於機器設備,從系統接收的資訊進而產出預測、建議、決策內容。 2.適用範圍 (1)此政策適用於「所有非企業的聯邦個體(non-Corporate Commonwealth entities, NCE)」,非企業的聯邦個體指在法律、財務上為聯邦政府的一部分,且須向議會負責。此政策亦鼓勵「企業的聯邦實體」適用此政策。 (2)依據2018年國家情報辦公室法(Office of National Intelligence Act 2018)第4條所規定之國家情報體系(national intelligence community, NIC)可以排除適用此政策。 3.適用此政策之機構,須滿足下列2要件 (1)公布透明度聲明 各機構應在政策生效日起的6個月內(即2025年2月28日前)公開發布透明度聲明,概述其應用AI的方式。 (2)提交權責人員(accountable official,下稱AO)名單 各機構應在政策生效日起90天內(即2024年11月30日前)將AO名單提供給DTA。 所謂AO的職責範圍,主要分為: I.AO應制定、調整其機構採取之AI治理機制,並定期審查、控管落實情況,並向DTA回報;鼓勵為所有員工執行AI基礎知識教育訓練,並依業務範圍進行額外培訓,例如:負責採購、開發、訓練及部署AI系統的人員,使機構內的利害關係人知道政策的影響。 II.當既有AI 應用案例被機構評估為高風險AI應用案例時,通知DTA該機構所認定之高風險AI應用案例,資訊應包括:AI的類型;預期的AI應用;該機構得出「高風險」評估的原因;任何敏感性資訊(any sensitivities)。 III.擔任機構內協調AI的聯絡窗口 IV.AO應參與或指派代表參與AI議題之政策一體性會議(whole-of-government forums)。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國交通部針對聯邦自駕車政策3.0徵集公眾意見

  2018年1月10號,美國交通部部長趙小蘭於出席內華達州拉斯維加斯之消費者科技聯盟(Consumer Technology Association)大會時表示,美國交通部正在研擬發布新版之聯邦自駕車政策3.0(Federal Automated Vehicle Policy 3.0, FAVP3.0)以因應自動駕駛技術於未來對安全性、機動性與消費者權益之衝擊。該聯邦自駕車政策3.0將會是一個綜合整體運輸業概況之自動駕駛政策,其將讓自動化運輸系統,包括,車子、貨車、輕軌、基礎設施與港口得以安全的整合。   為了達成上述目的,且讓公眾的意見得以協助辨識美國聯邦法規必須配合修正之部分,並鼓勵更多的創新研發。美國交通部於其網站上也發起了數個自動化車輛技術之意見徵集,讓其能更準確的找出當前美國法規對於自動駕駛技術創新所造成之阻礙。   該意見徵集主要分為四項,第一項是由美國交通部聯邦公路管理局(Federal Highway Administration, FHWA)主管,針對如何將自動駕駛系統整合進入公路運輸系統之資訊徵求書(Request for Information, RFI)。   第二項與第三項則是由聯邦公共運輸局(Federal Transit Administration, FTA)分別針對自駕巴士研究計畫(Automated Transit Buses Research Program)與移除相關障礙所發出之意見徵詢書(Request for Comments, RFC)。   最後一項則是由交通部國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)主管,針對移除自駕車法規障礙所發布之意見徵詢。

『採購單位執行下單評估與廠商智慧財產管理要件之關連性』研究調查

新加坡科技與研究局針對未來工廠提出研究規劃及方向

  新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。   為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。

TOP