新加坡個人資料保護委員會(Singapore Personal Data Protection Commission, PDPC)於2022年5月17日,公布「於安全性應用程式負責任地利用生物特徵識別資料指引」(Guide on the Responsible Use of Biometric Data in Security Applications),協助物業管理公司(Management Corporation Strata Title, MCST)、建築物及場所所有者或安全服務公司等管理機構,使各管理機構更負責任地利用安全攝影機和生物特徵識別系統,以保護蒐集、利用或揭露的個人生物特徵識別資料。
隨著安全攝影機等科技應用普及化,管理機構以錯誤方法處理個人生物特徵識別資料之情形逐漸增多,因此PDPC發布該指引供管理機構審查其措施。其中包括以下重點:
(1)定義生物特徵識別資料包含生理、生物或行為特徵,及以此資料所建立之生物特徵識別模版;
(2)說明維安攝影機及生物特徵識別系統運用所應關鍵考量因素,如避免惡意合成生物特徵之身分詐欺、設定過於廣泛而使系統識別錯誤等情形,並舉例資料保護產業最佳範例,如資料加密以避免系統風險、設計管理流程以控管資料等;
(3)說明生物特徵識別資料在個資法之義務及例外;
(4)列出實例說明如何安全監控之維安攝影機,並提供佈署建築物門禁或應用程式存取控制指引,例如以手機內建生物識別系統管理門禁,以取代直接識別生物特徵,並有提供相關建議步驟及評估表。
該指引雖無法律約束力,仍反映出PDPC對於安全環境中處理生物特徵識別資料之立場。而該指引目前僅針對使用個人資料的安全應用程式之管理機構應用情境,並未涵蓋其他商業用途,也未涵蓋基於私人目的使用安全或生物特徵識別系統之個人,如以個人或家庭身分使用居家高齡長者監控設備、住宅生物特徵識別鎖等應用情境。
馬來西亞農產業與產品部長(the Minister of Plantation Industries and Commodities)與印尼農業部長(the Minister of Agriculture)在今(2007)年5月25日共同表示,將採取行動來反制歐洲境內對其所生產棕櫚油有破壞生態環境之虞的論述。在全球暖化的議題發燒且歐盟設定再生能源使用目標的政策導引下,以棕櫚油為原料製造生質柴油的市場需求預期會大幅增加,這兩個全球最大棕櫚油產國於是認為許多對其棕櫚油生產不符永續發展要求的「不實」指控會影響其國內相關產業之發展。兩國政府與產業代表將以舉辦座談會、拜會歐洲各國官員與非政府組織的方式來提供「正確」資訊,同時兩國亦設定提升兩國棕櫚油年產量至1200萬公噸的目標。 然而世界自然基金會德國分會(WWF Germany)所發表的報告指出,棕櫚油之需求增加恐會導致棕櫚油產國的熱帶雨林遭砍伐來作為棕櫚樹的耕地。地球之友(Friends of the Earth)表示,目前已有90%的紅毛猩猩棲息地被破壞,此趨勢繼續下去野生紅毛猩猩將在12年內滅絕;綠色和平組織(Greenpeace)則指出印尼在2000至2005年間以全球最快的速率在砍伐森林,每小時有相當300個足球場面積的林地被破壞。此外,棕櫚油永續生產圓桌會議(the Roundtable on Sustainable Palm Oil,RSPO)亦開始研議棕櫚油生產的最低生態標準,希望能確保其生產符合永續發展之要求。
歐洲區塊鏈數位基礎設施聯盟預計於2024年正式開始運作,將進一步擴大推動區塊鏈的公共應用服務歐洲區塊鏈夥伴關係(European Blockchain Partnership, EBP)的成員於2023年6月正式向歐盟執委會(European Commission, EC)申請成立區塊鏈的「歐洲數位基礎設施聯盟」(European Digital Infrastructure Consortium, EDIC),若審核通過,未來歐盟將有一個正式的機構負責推動區塊鏈的發展與應用。 歐盟執委會於2023年1月發布了「2030年數位十年政策計畫」(Digital Decade Policy Programme 2030, DDPP),為促進歐盟數位轉型的大規模部署及能力建構,達到DDPP所設定的具體目標,執委會提出跨(多)國專案(Multi-Country Projects, MCPs)的概念,期待整合歐盟、各成員國、私部門的資源,以實現單一成員國無法獨立部署的數位化基礎設施。 執委會參考2009年開始陸續成立的「歐洲研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),提出了「歐洲數位基礎設施聯盟」(EDIC)的規劃。EDIC並非由歐盟的資助計畫支持,而是由成員國申請(至少要包含3個成員國)成立以執行MCPs,EDIC具有法人格,並有獨立的財務來源;此外,EDIC成立後開放私部門參加。 2023年3月執委會發布的「數位歐洲2023~2024年工作計畫」(Digital Europe Work Programme 2023-2024)中,即將「區塊鏈」列為MCPs的重要發展項目之一。2023年6月15日於瑞典舉辦的歐盟數位大會(Digital Assembly 2023)上,執委會表示EBP及歐洲區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)的相關成員國已遞交EDIC的申請。 斯洛維尼亞共和國(Republic of Slovenia)的區塊鏈小組負責人Nena Dokuzov是成立聯盟的主要推動者之一,其受訪時表示,EBSI從2018年以來,主要是由執委會以專案方式支持,未來聯盟成立以後,將能集結更充足的資源,強化歐洲區塊鏈的治理和穩定性,進一步地擴大推動歐洲區塊鏈的公共應用服務。我國「司法聯盟鏈」於2022年成立,為我國第一個跨部會、大規模的區塊鏈應用案例,並制定了跨組織協作標準規範(簡稱b-JADE),未來可持續觀測歐盟區塊鏈聯盟的發展,作為我國的參照。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國法院判LV勝訴,並可獲得3240萬美元的損害賠償法國知名品牌公司路易威登(Louis Vuitton,下稱LV) 與網際網路服務提供者(Internet Service Providers,以下簡稱ISP)之商標及著作權訴訟案,在2009年8月31日獲得加州聯邦地方法院陪審團的裁定,判定LV贏得商標及著作權侵害訴訟,並可獲得3240萬美元的損害賠償。LV在找到使用相同網址並且明知販賣LV假貨的網站後,於2007年提出著作權及商標侵害訴訟。 Steven Chen管理的Akanoc Solutions公司、Managed Solutions Group公司提供侵害LV商標及著作權網站網際網路的服務,加州聯邦地方法院陪審團認定Akanoc、Managed Solutions和Steven Chen須負輔助商標及著作權侵權之責任,並且要負損害賠償3240萬。同時,LV聲明希望法院對侵權的網站提出永久禁制令,禁止網站上兜售LV假貨。 陪審團的這項裁定引起網路上的討論,一般輿論都認為此項裁定賦予ISP業者太重的責任,然而陪審團決定的關鍵要點在於他們相信被告(Web Host)明知或可得而知侵權行為正在發生。 每日財經(Daily Finance)專欄作者Sam Gustin觀察指出:對於美國的ISP業者來說,此項規定傳達出一個清楚且略微可怕的訊息,當ISP業者提供服務的網站,有販售假貨或侵權物品,即便ISP業者有試著去阻止這項非法的活動,但卻失敗了,仍須負責。 LV智慧財產主管Nathalie Moullé-Berteaux認為陪審團所做出的這項裁定。對減少網站非法販賣偽造品或假貨跨出重要的一步,並且強制建立網際網路的法律規範
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。