奈及利亞新創企業條例二讀通過,具體化對新創企業的定義

  奈及利亞目前為非洲發展新創企業最為成功的國家,於2021年獲得了超過18億美元的投資。而奈及利亞為了擴大新創發展,於2021年6月開始初擬奈及利亞新創企業條例草案(The Nigeria Startup Bill 2021,以下簡稱「新創草案」),並於同年9月完成草案,於10月提交予總統,並於2022年3月交付奈及利亞參議院進行立法,直至目前已通過二讀。

  新創草案將確保奈及利亞新創相關法規清晰、有計劃地適用於科技新創生態系統,並認為將有助於為科技新創企業成長、發展和運營,同時打造出可以吸引和保護投資之有利於科技新創企業之環境。此外,該草案亦希望能促進奈及利亞科技相關人才的發展和成長,並將奈及利亞的新創生態系統打造成非洲領先的科技發展重鎮,培養出擁有科技尖端技能和出口能力之優秀創業家。

  新創草案希冀能透過該草案達成建立數位發展及創業委員會、支持新創企業和潛在參與人、定義新創企業、發展創投基金、培訓新創企業及其未來發展、設計稅收或財政激勵措施、取得相關法規支持、招攬加速器或孵化器、形成新創園區或產業聚落。其中,新創草案對於新創企業之定義為:公司成立未滿10年、公司經營項目為數位科技之創新項目、公司需研發或持有數位科技產品,最後公司須由一名或多名奈及利亞人持有至少51%股份。

相關連結
你可能會想參加
※ 奈及利亞新創企業條例二讀通過,具體化對新創企業的定義, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8869&no=55&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
冰島政府對英國同名Iceland Foods 採取法律行動

  冰島政府日前對自1970年成立至今,已擁有8百多間超市的英國連鎖食品超市「Iceland Foods」,向歐盟智慧財產局(European Union Intellectual Property Office)提起註冊無效之訴訟。該超市為創辦人Malcolm Walker)與南非投資集團Brait共同擁有,以銷售冷凍肉類、乳製品、乾貨及微波食品為主要業務。   冰島政府指稱英國Iceland Foods企業使用「Iceland」於歐洲註冊商標,而該文字商標含蓋範圍廣泛且定義模糊。多數冰島企業於商品或商標中使用英文「冰島」一詞,除與英國Iceland Foods無販賣相似性質之產品,也無存在競爭關係,但卻使冰島企業無法將(Iceland)做為產品之描述用。對此,Iceland Foods發出聲明希望冰島政府可以直接與Iceland Foods聯繫,並強調該企業以Iceland名稱經營已經46年,並不認為未來消費者或一般社會大眾在商標上會有混淆。   目前若要在歐洲的任一個國家獲得商標權的保護,可分別在不同的國家提出註冊申請或向歐盟內部市場協調局(The Office of Harmonization for the Internal Market,簡稱OHIM)提交歐盟商標申請(Community Trade Mark,簡稱CTM)。商標註冊申請人並不限於歐盟成員國的國民,而商標獲准註冊後即可在27個成員國內享有商標權的保護。

昇陽進入開放原始碼 Solaris 時代

  昇陽公司本月十四日把 500 多萬行 Solaris 核心 (kernel) 的原始碼張貼在 OpenSolaris 網站上。不過,一些原始碼元件,像是安裝程式與管理工具,因為仍在逐行檢視以免專利侵權問題,稍後才會推出。   Solaris 是使用率相當廣的一種 Unix 衍生版本,在一九九○年代末期網路泡沫時期大行其道,但後來隨開原碼作業系統 Linux 竄起而式微。同時,微軟的 Windows 作業系統,也蠶食著昇陽的市占率。為了讓 Solaris 成為開放原始碼軟體,昇陽積極拉攏軟體開發人員,軟體開發人數增多,可能引來更多的使用者、更多的合作夥伴,以及更多的軟體開發者。然而,要與氣勢正旺的 Linux 競爭,並非易事。 Solaris 開發工程僅傾昇陽一家公司之力,但 Linux 幕後卻有廣大的開發人員社群支持。   Quandt Analytics 分析師 Stacey Quandt 說,與外部程式設計師分享權力,是昇陽必須通過的考驗。對昇陽來說,真正的挑戰是,昇陽是否真能容納局外人貢獻的修補程式,而且不叫昇陽經驗老到的工程師加以改寫。   OpenSolaris 是昇陽自行研發的專屬計畫,但不表示一定會失敗。 IBM 即曾經以 Eclipse 程式設計工具為中心,建立起活力十足的開原碼社群,就是成功的例子。昇陽雖來不及按原訂計畫在二○○四年推出 OpenSolaris ,但已推動一些配套措施,包括在今年一月發布稱為 DTrace 的元件,提供詳細的效能分析;吸引一百五十位外部程式設計人員參與 OpenSolaris 測試計畫;並成立由五人組成的社群顧問委員會,其中兩席是昇陽的代表。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

歐盟執委會規劃制訂新世代智慧電網規範,及研擬共通性評估要項工具

  歐盟執委會(European Commission)於去(2011)年10月公布一份「建立共通性智慧讀表功能要項及影響因素(Set of Common Functional Requirements of the Smart Meter)」調查報告,對於各會員國發出問券,調查對於建設智慧讀表(智慧電網SmartGrid系統首要基礎)之經濟評估要項,藉此瞭解各國於推動建立,所考量之優先因素及差異性,並藉此彙整出「成本效益評估項目(Cost Benefit Assessments , CBAs)」,建立歐盟層級之共通性功能要項,以利後續其他會員國援用導入之政策工具。   以及,歐盟執委會所屬聯合研究中心(Joint Research Centre , JRC),於去(2011)年7月亦公布一份「歐盟智慧電網關鍵挑戰及發展趨勢(Smart Grids: New Study Highlights Key Challenges and Trends in the EU)」研究報告,指出歐盟各會員國現今已投入219個智慧電網計畫,總經費達5.5兆歐元以上,並設立展示(Showcases)網站,供外界瞭解推動進度;此研究報告並指出,要健全智慧電網發展,除了大規模投入經費資源建設外,更應重視各會員國對於原既有能源管制規範之體檢審視;該報告呼籲各會員國應積極建立新世代智慧電網規範,因為於現有管制規範下,常導向各國推動實務,多僅強調可降低系統運作支出成本,而不是直接朝向升級為智慧性整合體系而發展,於現有監管模式(Current Regulatory Models)下,縱使眾多投資於智慧電網,亦無法出現突破性發展。該報告並倡議,新世代管理規範,至少應建立服務平台運作原則及遵守規範,並導引效益之公平分享。   此外,歐盟執委會於去(2011)年4月間,關於智慧電網發展重要法制政策之關鍵議題,亦曾發布「智慧電網創新發展(Smart Grids: From Innovation to Deployment)」政策文件,其中明列發展智慧電網,首要應重視資料隱私及安全性議題(Addressing data privacy and security issues),亦必須建立共通性標準(Developing common European Smart Grids standards),及提供優惠政策措施,並且應確保消費者資料接取(Access)權利,保證維持公開競爭市場並鼓勵增進消費者利益之各項發展。

TOP