日本經濟安全保障推進法提出國家經濟安全四大政策

  日本於2022年5月18日公布「經濟安全保障推進法」,為了確保、防止經濟相關活動危害國家安全,該法將自公布後2年內(至2024年5月17日)分階段施行。日本已於8月1日設立「經濟安全保障推進室」承擔與相關省廳調整作業、制定基本方針及公共評論等,將與日本國家安全保障局(NSS)共同完成經濟安全保障政策。

  經濟安全保障推進法主要有四個面向:
  一、確保重要物資安定供給(該法第2章)。
  二、提供安全基礎設備的審查(該法第3章)。
  三、重要技術的開發支援(該法第4章)。
  四、專利申請的非公開制度(該法第5章)。

  首先就重要物資部分,明定須符合國民生存不可或缺、過分依賴海外支援、若停止出口等原因將導致中斷供給、或實際有中斷供給情事發生等要件,即為重要物資。國家會提供資金等資源援助重要物資的企業經營者,但對其有調查權,若企業不接受調查則受有罰則。

  而針對電信、石油等領域之基礎設備,為穩定提供勞務及避免該基礎設備有損害國家安全、社會經濟秩序之虞,於基礎設備引進或維護管理時,企業須事前申報相關計畫書(記載重要設備供給者、設備零組件等),倘認為有妨害國家安全之虞,則可採取禁止設備導入、終止管理等必要措施。

  關於重要技術開發支援,列舉了20個領域包括AI、生物技術等,將由經濟安全保障基金撥款,選定各領域之研究人員組成產官協議會委託研究業務等,但應對研究內容為保密,否則設有徒刑等罰則。

  另對於科技技術之發明專利,若公開將損及國家安全時,專利廳會將專利申請送交內閣府,採取保全指定措施,於指定期間內,禁止其向外國申請IP、禁止公開發明內容、暫時保留專利核定,防止科技的公開和資訊洩露,但國家應補償不予專利許可所遭受之損失。

  針對上開政策已有業者反映國家管理措施太强,將可能成為企業絆腳石,特別是進行審查時有可能導致企業活動速度放慢,應掌握實際情況。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本經濟安全保障推進法提出國家經濟安全四大政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8876&no=64&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
美國總統發布行政命令,促進資料中心基礎建設之發展

2025年7月23日,川普總統簽署行政命令,加速資料中心基礎建設(data center infrastructure)之發展。適用該命令之資料中心,需新增超過100百萬瓦(MW)電力負載,並新增瓦數專用於人工智慧推論、訓練、模擬或產生合成資料。 行政命令內容主要包含以下事項: 1. 政府將為合格資料中心基礎建設提供財政支持,如貸款、貸款擔保、補助金(grants)、稅收優惠(tax incentives)或承購協議(offtake agreements)。本行政命令所稱之合格資料中心基礎建設,其本體或相關設施需符合以下條件之一: (1) 業者承諾投資超過五億美元,五億以上之具體門檻以美國商務部長認定為準。 (2) 新增超過100百萬瓦(MW)之電力負載。 (3) 有助於維護國家安全。 (4) 經美國國防部、內政部、商務部或能源部之部長指定。 2. 撤銷拜登總統發布之14141號行政命令「推進美國在人工智慧基礎建設領域的領導地位」。該命令原要求在聯邦土地建設人工智慧資料中心者須提供關於多元與氣候議題之說明。 3. 指示政府機關簡化合格資料中心基礎建設的環境審查和許可。 (1) 相關政府機關應向環境品質委員會(Council on Environmental Quality)確定依《國家環境政策法》(National Environmental Policy Act),可以加速合格資料中心基礎建設建置的環境審查豁免措施。 (2) 環境品質委員會應考量資料中心基礎建設對環境產生之影響,制定新的環境審查豁免措施。 4. 對符合FAST-41計畫(FAST-41 program)要求之資料中心基礎建設,加速其取得建設相關許可之過程。 該計畫名稱及內涵緣起於《修復美國地面運輸法》第41章節(Title 41 of the Fixing America's Surface Transportation Act)。一般而言,參與該計畫之建設,需滿足指定投資額、受指定組織贊助、於指定地點興建,或合乎特定環境法規等要求。合乎計畫要求之建設,可與主管機關協調取得建設相關許可之時間,並由聯邦許可改善指導委員會(The Federal Permitting Improvement Steering Council)下屬團隊協助進行專案管理。 5. 環境保護局(Environmental Protection Agency)局長應依法定權限,加速確認可供合格資料中心基礎建設使用的棕地(brownfields)。 依美國環境保護局定義,棕地是指含有危險物質、污染物的土地,因開發利用困難,需進行養護、排除開發障礙,或以其他方式開發。 6. 內政部、能源部應依法確定適合用於建設資料中心的土地,適當授權合格資料中心基礎建設業者在聯邦土地上進行建造。 參酌該行政命令意指,美國政府期許減少環境政策對人工智慧資料中心及相關設施的影響,透過快速推動建設進程,確保美國經濟繁榮,以及在科學、數位經濟領域的領導地位。

新加坡擬禁止未獲所有人同意下測試和研究基因

  新加坡生物道德諮詢委員會五日發表基因檢驗與研究道德準則草案,草案建議政府禁止基因研究者在未獲得同意之下取得基因進行測試與研究,同時也禁止採用基因檢驗來選擇胎兒的性別。新加坡生物道德諮詢委員公布基因檢驗與研究道德準則草案,共提出二十四項建議,希望能在研究人員從事基因研究時,保障人權。    草案建議政府,任何基因測試除非獲得基因所有人同意,否則不得進行。,產前基因篩檢只能限於確保孩子的健康,不要把先天性疾病遺傳給下一代,但不能用在選擇生男或生女。草案規範,研究員或醫生不能把基因研究結果透露給第三者,包括雇主和保險公司知道,以保障個人隱私。    委員會已經把草案公布在網站上供民眾查閱,並分送給一百一十四個機構,徵詢公眾和機構的看法;委員會將在年底向星國生命科學部長級會議提出報告。

美國音樂授權平台營運觀察─以BMI為例

美國音樂授權平台營運觀察─以BMI為例 資策會科技法律研究所 法律研究員 丘瀚文 104年10月22日 壹、前言   我國著作權法採「創作保護主義」[1],於著作完成之時,立即取得著作權保護,惟亦因如此,實務上難以證明何人為著作權人,常使利用人鋌而走險非法使用著作,使我國著作權流通、發展受到限制。如何讓著作人可以安心授權著作、利用人得以透過合法授權管道,簡單的取得授權,國外已有透過建立著作權授權平台來解決問題的先行實例。本文為研析我國著作權授權平台可行之營運方式、授權契約、費用計算方式,故觀察分析美國第二大音樂授權平台Broadcast Music Inc.(以下簡稱BMI),之特色,希望對我國著作權授權平台建立,有所助益。 貳、BMI音樂授權平台介紹 一、BMI音樂授權平台介紹   American Society of Composers Authors and Publishers(以下簡稱ASCAP)是美國最大的音樂授權平台,自1914年成立以來,凡是以公開播放方式利用音樂著作皆須向ASCAP支付授權費用,長久壟斷音樂授權市場[2]。在1940年ASCAP大幅提高授權費用後,以美國廣播協會為首廣播業者,為了因應ASCAP之調整價格,便聯合了500多家廣播公司自行組織了BMI進行抵抗,並蒐集大量非ASCAP管理之音樂供廣播業者利用,但由於後續運作獲得許多利潤,因而繼續經營。   美國司法部於1941年對ASCAP提出反托拉斯訴訟,結果達成和解,之後又於2001年司法部再度與ASCAP達成協議,完成了第二最終修正裁判(Second Amended Final Judgement),該協議讓司法部得藉司法監督,去控制ASCAP授權音樂費率於一定額度內,使BMI跟ASCAP能維持競爭關係。上開原因使BMI能慢慢發展成美國第二大音樂授權團體。 二、BMI授權方式觀察   BMI授權方式分為兩種,一為非即時性授權契約,其提供著作利用人定型化授權契約,但需經由傳真、客服確認時間,故不具有授權即時性;此一類型又區分為概括授權和單一節目授權兩種形式;二為即時性線上授權契約,利用BMI自行創設之數位授權中心,經線上填入資料、金融轉帳後,即可立即獲得授權,惟目前依網頁介紹觀察,授權對象僅限網站[3]。下列即分述兩種授權方式。 (一)非即時性授權契約   BMI非即時性授權契約分為媒體授權合約(Media Licensing)和一般授權契約(General Licensing)等兩大類型,媒體授權合約主要以公開播放業者為授權交易對象,並區分概括授權與個別節目授權;概括授權即繳納年費後不限次數使用,而個別節目授權則限定特定節目使用,如需在其他節目使用則需另外繳納授權費。   一般授權契約對象則多是廣播以外其他行業,如遊樂園、舞廳、餐廳、政府機關、健身俱樂部、手機…等,其使用授權費率皆不同,利用人填入行業內容後,該授權系統會線上提供與該行業相關授權契約內容供利用人參考,利用人填寫後可上傳至BMI管理中心即可完成授權作業[4]。不過亦非所有行業BMI均提供授權契約範本,仍有部分如餐館等,尚需使用人自行連絡BMI代理人方得進行授權。   以零售商(Retail Establishments)為例,本文登入BMI授權系統,並點選「Apply for License」按鈕,即出現下載授權契約選項,其內容包含[5]:有人對使用方提出訴訟,其訴訟標的關於BMI所提供授權服務,BMI將會負責損害賠償部分。使用人若想結束或轉讓生意,應於30日email至licensing @bmi.com,BMI會將授權金額重新計算,並寄送於使用人。   費用計算上BMI對每個行業皆有不同「計算基準」,據此計算出授權費用。例如零售商是以「場地大小」為計算基準;2000平方英呎以下零售商撥放一般音樂,授權費用為一年為227.6美元,播放具有視覺性音樂(MV),授權費用為一年307美元。計算基準是隨行業不同而有所變化,例如健身房則與零售商相異,其一年最少費用為311美元,費率亦非以「場地大小」單價計算,而是用「會員數量」作計算基準,並區分音樂是否使用於健身課程,而有不同費率;用於健身課程則一個會員0.279美元,非用於健身課程則一個會員0.195美元[6]。   最後,申請人應將此一表格掃描後做成電子檔,並藉由BMI網頁的上傳功能,上傳至BMI管理中心,中心審核後並確認匯款無誤,即會通知申請人開放授權[7]。 (二)即時性線上授權   BMI即時性線上授權是透過「數位授權中心」(Digital Licensing Center)進行,和非即時性一般授權契約不同,著作利用人只須登入該系統,線上填妥相關利用資訊,並以信用卡、線上轉帳等方式給付授權費用,即得線上完成與BMI締結授權契約程序。BMI將此一授權方式簡化為線上處理,避免授權契約雙方往返溝通繁雜手續,並具有即時性,是更為便利的交易模式。 x數位授權中心有兩種計價方式,總收入計算法與網頁流量計算法。總收入計算法是將網站一定比例收入計算為音樂授權金額。網頁流量計算法則是依據網頁上的流量為基準計算音樂授權金額[8]。而BMI將網站使用區分為三類:1.音樂網站2企業網站3.非營利網站,三者會讓使用者選擇計價方式不同。   舉例來說,企業網站、非營利網站關於音樂使用,其音樂使用與網站業務目的無關,音樂使用僅為提升形象,故不宜使用總收入計算法,應採網頁流量計算方式會較為節省[9]。簡言之,音樂使用與網站業務目的相關,則多使用總收入計算法,使用音樂與網站業務目的無關,則多使用網頁流量計算法。而網站可對財政報告進行分析,並選擇最經濟的方案,並可在一年中進行四次的變更,以符合網站商業運作模式。 參、結論   藉由觀察國外著作權平台授權方式並參考營運模式,對於我國類似平台建置營運提出三點或許可以借鏡之建議: 一、依行業區分不同授權標準   BMI之授權契約多樣化,並以行業做為區分標準,滿足不同需求,此區分各種行業不同收費方式,值得借鏡。例如廣播業者與零售商播放音樂軟體,使用權利雖可能皆為公開播送權,但播放時間、地點、影響程度可能皆不相同,如一律依使用權利態樣定收費標準,似有失公平,應可參考BMI以行業區分授權契約種類模式。 二、即時性線上授權   BMI將授權契約區分為即時性授權契約與非即時性授權契約,而即時授權對於使用人而言,較為方便,我國則可考慮以即時線上授權為基礎,並將對象擴張至一般行業皆能運用。 三、費用計算方式   BMI即時線上授權收費方式區分為總收入計算法與網頁流量計算,在授權對象為網站時,給予多重選擇,例如使用者為一般網站時,網頁流量計算法是對其比較有利的。這種費用的計算方法,讓使用人可依據網站業務不同,選擇利益最大化之優點,增加了使用人使用平台誘因,故此方式值得借鏡。   綜上,BMI之授權方式與契約內容、經營方式有獨到之處,可成為我國著作權平台建立之參考範本,使著作得以順利流通,促進我國產業發展。惟各式授權契約擬定,除有賴大量契約範本蒐集方得完善,授權費用如何設定仍是未來類似平台建置營運必須透過交易經驗與資料統計分析始能克服之難題。 [1] 著作權法第10條:著作人於著作完成時享有著作權。 [2] Music Licensing History,National Religious Broadcasters Music License Committee,http://www.nrbmlc.com/music-licensing/music-licensing-history(last visited Sep. 8, 2015). [3] BMI,https://apps.bmi.com/licensing/nmwebsite.jsf(last visited Aug. 12, 2015). [4] Musuc Users,BMI,http://www.bmi.com/licensing(last visited Aug. 12, 2015). [5] Music License For Retail Establishments,BMI,http://www.bmi.com/forms/licensing/gl/rtl.pdf (last visited Sep. 12, 2015). [6] Music License For Fitness,Clubs,BMI, http://www.bmi.com/forms/licensing/gl/fit1.pdf,(last visited Sep. 8, 2015). [7] BMI,http://www.bmi.com/digital_licensing(last visited Sep. 8, 2015). [8] 例如來站人次、瀏覽人數。 [9] BMI,http://www.bmi.com/digital_licensing(last visited Aug. 11, 2015).

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP