美國財政部外國資產管制辦公室(Office of Foreign Assets Control,簡稱OFAC)根據《防止大規模殺傷性武器擴散與恐怖主義》(Preventing Weapons of Mass Destruction Proliferation and Terrorism, 50 U.S. Code Ch. 43)聯邦法律之授權、第13382號總統行政命令(Executive Order,下稱行政命令)以及第14024號行政命令,於2022年9月8日將向俄羅斯運送伊朗製無人機(Unmanned Aerial Vehicles,簡稱UAVs)之空運業者納入制裁清單;另將3家公司與1位參與無人機及其零組件研究、開發、生產與採購之個人納入制裁清單,避免非來自伊朗及俄羅斯之實體支持伊朗製無人機之研發,或向俄羅斯出售任何用於對付烏克蘭的軍事裝備。
此次列於清單中之空運業者Safiran Airport Services,總部位於伊朗德黑蘭,其將伊朗製無人機、人員和相關設備從伊朗運送到俄羅斯。根據情報顯示,俄羅斯軍隊打算將伊朗製無人機與俄羅斯無人機運用在對烏克蘭的戰爭中,故OFAC依據第14024號行政命令,將該空運業者納入制裁清單。另針對無人機製造商,以Paravar Pars為例,其參與伊朗Shahed-171無人機研發和生產,故OFAC依據第13382號行政命令,將其列入制裁清單。
上述空運業者及製造商在遭受制裁後,可能會受到的影響包括:
(1)在美國或由美國籍公民或企業所有或控制的所有財產和財產利益皆被凍結;禁止與美國籍公民或企業交易;或禁止與在美國境內被制裁對象的任何財產或利益交易(如金流過境美國的交易);與前述列為清單對象進行交易之人,亦可能會被列為清單對象。
(2)任何外國金融機構故意與前述列為清單制裁對象,促成重大交易或提供重要金融服務,都可能受美國相應的制裁或對「支付過渡帳戶」(payable-through account)的制裁。而此「制裁」不限於凍結帳戶,參考OFAC官網中的第36則FAQ之說明(https://home.treasury.gov/policy-issues/financial-sanctions/faqs/topic/1601),某些案例中之交易應該被禁止,但該交易沒有可凍結的利益時(如該帳戶已為制裁清單所列對象或已被凍結的個人或政府),OFAC會以「要求美國金融機構拒絕非制裁以外的第三國企業間的交易」或以「透過禁令使美國金融機構拒絕處理該交易且退回款項予匯款人,除非有得到事前個別授權」等方式處理。
本文為「經濟部產業技術司科技專案成果」
新加坡通訊與資訊部(The Ministry of Communications and Information)轄下資通訊媒體發展管理局(Infocomm Media Development Authority)於2023年6月5日公布「數位連結性藍圖」(Digital Connectivity Blueprint, DCB),指出新加坡將透過數位基礎設施的建置,實現提升網路容量、最大化運算能量、整合基礎設施集合(infrastructure stack,即將多個基礎設施作為一整體進行定義、提供與更新)、確保安全與韌性,以及永續性設計(Design for sustainability)目標,並識別五項戰略性優先事項如下: (1)在未來十年將海底電纜數量提升為現有的兩倍; (2)透過將新加坡國家寬頻網路(Nationwide Broadband Network, NBN)的頻寬提高十倍、分配頻譜予5G專網(Standalone, SA)等方法,於未來五年內建構並提供無縫、端到端且速度高達10 Gbps的國內網路; (3)與供應商合作,強化運算基礎設施的透明性與可歸責性,並與國際最佳作法保持一致; (4)為新的綠色資料中心(Green data centre)制定長期成長路線圖並使其更具能源效率; (5)推動對新加坡數位公用設施(Digital Utility, DU)集合的採用,以擴張無縫數位交易的優勢,並持續探索能從現有DU中受益的使用案例。 除戰略性優先事項外,新加坡將在更新興且前沿的領域中採取行動,具體措施包含: (1)在未來十年推動新加坡量子安全(Quantum-safe)願景; (2)為普遍的自動化系統使用奠定基礎; (3)透過測試平台與沙盒建立利害關係者生態系統,推動綠色軟體(green software)的開發、標準制定與評估; (4)透過低軌道衛星服務為關鍵產業提供創新解決方案。
Google根據加州消費者隱私保護法,允許屏蔽個人化廣告Google近期宣布更新廣告政策,以遵守將於2020年1月1日生效之「加州消費者隱私保護法」(California Consumer Privacy Act, CCPA),要求符合該法規之事業體(不論是否於加州開設實體據點):年度總收入超過2,500萬美金、年度收入50%以上源自於出售加州居民之個人資料、每年收到或分享總計超過5萬筆加州居民、家庭或裝置之個人資料、若公司之母公司或子公司符合CCPA所定條件者,允許消費者得選擇並行使退出其個人資料銷售權利。 Google表示使用其網站廣告工具與應用程式將能屏蔽個人化廣告,個人化廣告,係依消費者瀏覽紀錄、興趣及過去行為投放予消費者,廣告商有時花費高達10倍價錢置入,惟互聯網相關企業先前所進行之遊說未能使該法規排除個人化廣告,從使最受歡迎及利潤豐厚之線上廣告面臨行銷危機。 依Google新合規條款,透過Google工具(如AdSense和Ad Manager)銷售廣告之網站及應用程式目前無需進行重大更改,廣告商亦可選擇停止所有來自加州網址之消費者或阻擋全球使用個人資料之個人化廣告銷售,該合規條款除於線上發布外,並已通知予各廣告商。 Google表示,當觸發「限制數據處理」時,廣告將僅基於一般數據,例如用戶所在城市位置或廣告所在頁面主題等;此外,Google亦不會在受限制模式下記錄個人資料而用於未來之廣告行銷。
日本發布2020年統合創新戰略,聚焦疫後科研與創新政策日本內閣府在2020年7月17日發布「2020年統合創新戰略(統合イノベーション戦略2020,下稱創新戰略2020)」政策文件。創新戰略為內閣府轄下綜合科學技術與創新會議(総合科学技術・イノベーション会議)依據日本科學技術基本計畫,自2018年起固定於每年度發布。其目的係自全球性的觀點出發,提出含括科研創新之基礎研究至應用端的整體性策略。本年度創新戰略著眼於COVID-19疫情流行與世界各地大規模災害頻仍下,日本科研與創新政策所面臨的課題以及應採取的對策,並擴大科研領域,納入人文社會科學。 創新戰略2020指出,因COVID-19疫情影響,醫療體系、社經生活與研發活動皆受到程度不等的衝擊,包含零接觸經濟興起、社交方式改變與實體研究室關閉等。與此同時,美中科技對抗、GAFA數位壟斷爭議、極端氣候與天然災害等國內外情勢變遷快速。在此背景下,日本的首要課題為建構不間斷且強韌的醫療、教育、公共事業等社會服務體系,維繫國內外社會的鏈結。為此,應透過加速數位化,促成創新活動,同時強化研發能量,實現以人為本的「Society5.0」之社會。 基此,創新戰略2020提出了以下四項具體對策: (1)建立足以應對疫情困境、具韌性的社會經濟體系:在公衛醫療體系,進行疫苗與醫療儀器之研發,並運用數位科技傳遞訊息;因應科研創新與產學合作受疫情影響停擺,給予及時資助,如培育年輕創業者、提供推動引導研發補助(開発研究促進助成金,通稱Gap Fund)等;推動教育、研究、物流等各領域的數位化,同時自經濟安全保障的觀點,強化供應鏈韌性。 (2)創新創造:透過官民合作,實踐智慧城市的構想;同時持續推動「STI for SDGs路線圖(STI for SDGsロードマップ)」政策;藉由實踐研究誠信(研究インテグリティ),加強與國際網路合作;另一方面,應發展post 5G與Beyond 5G等前瞻數位基礎技術,並持續建置各領域的資料流通基礎設施。 (3)強化科研與創新之研究能量:建立能充分吸引年輕人才挑戰、進行創新研發的研究環境,同時成立基金以建構世界級的研究基礎設施;以充分活用大學研發成果為目標,檢討智財制度發展的願景;結合人文社會科學領域研究,並活用射月型研發(ムーンショット型研究開発)制度,發展社會問題解決方案。 (4)重要科技發展項目:於基礎技術層次,包含AI、生化科技、量子技術、材料等,對此應優先投入研發、培育相關人才;於應用科學層次,則包含防災、防疫、資安、能源、健康醫療、航太、糧食、農漁產業等。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)