OECD將就第一支柱金額A召開公開諮詢會議

  OECD(經合組織)於2022年9月12日巴黎時間12時至17時召開第一支柱金額A(Amount A of Pillar One)的公開諮詢會議。蓋2021年10月,共137個成員同意自2023年啟用雙柱計畫(Two-Pillar Plan),OECD為提供能協助各國制訂相關內國法之「示範規則(Model Rules)」,已多次並持續公開徵詢意見。

  其中,作為第一支柱的全球利潤分配稅制,係針對全球收入逾200億歐元且稅前淨利逾10%的大型跨國企業,定其逾10%的利潤為「剩餘利潤」,並取25%依關聯性(Nexus)重新分配至價值創造地,此剩餘利潤即本次會議欲討論之金額A。

  一旦劃歸金額A將適用高達25%之稅率,故2022年7月11日,OECD所公布第一支柱的「進度報告(Progress Report)」,即針對如何計算大型跨國企業之全球總所得、如何量化系爭所得為金額A之稅基、如何定關連性原則以決定各價值創造地對金額A徵稅權之有無及高低、稅捐競合時如何避免對金額A造成雙重課稅,以及各該要件之定義等核心問題,列出7項標題(Title)作為本次會議討論重點。

  然而,除了金額A徵稅權之跨國分配所涉利害關係錯綜複雜外,因各國稅制與發展不一致、美國對雙柱計畫之態度似有保留、歐盟成員國迄今仍無法達成一致共識,以及烏俄戰爭引發的通貨膨脹等各種內外因素,均為第一支柱示範規則之訂定,甚至雙柱計畫之實施增加了不確定性。準此,本次會議重要性不言可喻,值得我國持續注意。

相關連結
你可能會想參加
※ OECD將就第一支柱金額A召開公開諮詢會議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8900&no=55&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
馬來西亞社會安全網-就業保險

  馬來西亞政府計劃於2018年推行就業保險計畫(Employment Insurance Scheme,EIS),為受雇人提供一個就業的社會安全網包括失業津貼和培訓支持,計畫內容: 適用範圍:典型受雇工作者。    基金管理機構: 社會安全機構(Social Security Organisation,SOCSO)。 保護內容:為被裁員工提供三個月至六個月的臨時財政援助。例如,在求職津貼下,失業人員可以獲得第一個月的假定月工資的80%,第二個月的50%,第三個月和第四個月的40%,第五個月和第六個月的30%。 保險費用:雇主必須負擔受僱人月薪之0.2%,僱員亦須繳納受僱人月薪之0.2%。繳費將根據員工的工資按固定比例計算。保費繳納之上限為收入4000令吉(Riggit Malaysia,RM)以上者,繳納的最高貢獻額為59.30令吉。 罰則:一萬元以下或兩年以下有期徒刑。   根據國際勞工組織(ILO)一項研究顯示,2011年越南失業人員中只有5%受到失業保險的保護,泰國則為25%。即使在非典型工作者較無問題出現的國家,失業人員的有效覆蓋率通常在40%到50%之間。主要原因在於,失業保險只包括典型工作者,然而亞洲較多數人為非典型工作者。   另一方面,2016年馬來西亞提高最低工資增加雇主負擔,使雇主感受到高額成本的壓力。推行就業保險計畫雇主所需承擔之成本又再次增加。這使得雇主不得不傾向選擇短期契約工作或外包工作。使得雇主減少雇用正式員工,本身待遇與福利居於弱勢的非典型工作者增加,反而使得計畫可以保護範圍縮小加深非典型工作者不平等問題。面對目前全球非典型工作者人數有快速膨脹趨勢,以及雇主捨棄高成本的雇用方式。如何立法保護或改善非典型工作者就業環境,將成為就業保險計畫另一個重要的核心議題。

歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用

  歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。   「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。   「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。   在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。   而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。   在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。

日本經產省修正〈電子商務交易及資訊商品交易等準則〉

  日本經濟產業省於2018年12月19日修正「電子商務交易及資訊商品交易等準則」(電子商取引及び情報財取引等に関する準則,以下稱「本準則」),主要係因應2018年《不正競爭防止法》在促進資料利用之環境整備方面,以及《著作權法》在應取得著作權人同意之行為範圍部分之修正。   本準則首次公布於2002年3月,係經產省透過學界、產業界及金融界專家、相關主管機關、消費者等各方合作,整理民法等各相關法規釋疑而成,因此,須隨著法規修正更新本準則中的法規適用、爭點、說明等內容。經產省期能透過本準則提高交易當事人對電子商務交易及資訊商品交易相關市場的可預見性(foreseeability),並促進交易。   本準則此次修正相關重點如下: 於網站上販售或公布用以安裝程式或存取、複製數位內容(digital content)及程式之帳號及密碼者,應負相關衍生之法律責任。 針對透過網路蒐集、輸出、於內部網路登載、投影他人著作物等利用行為者,加以限制規範。 若學校授課、企業培訓係使用網路進行遠距教學,或遠距教學服務之供應商有償向學校、企業提供課程而違法利用他人著作物者,則學校、企業、服務供應商須依著作權法負相關法律責任。 使用者(被授權人)基於契約取得供應商(授權人)之同意得以使用資訊商品,縱使該資訊商品之智慧財產權(著作權、特許權)受讓予他人,使用者仍得繼續使用該資訊商品。 因體驗版之手機應用程式、軟體、共享軟體,對使用功能或使用期間有所限制,若行為人違法散布解除限制方法於網路者,則行為人應負之法律責任。 向第三人提供全部或部份有償之資料集(dataset)等行為者,加以限制規範。 針對使用P2P共享軟體將檔案上傳至網路、自網路上下載以及提供P2P共享軟體等行為,就是否違反著作權法進行討論。 拍攝到第三人著作物之合理使用。

美國科羅拉多州通過《人工智慧消費者保護法》

2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。

TOP