日本制定綠色轉型基本方針草案,規劃未來10年政策藍圖

  在美中對抗、烏俄戰爭等地緣政治背景下,世界各國開始重視供應鏈穩定問題。日本在過去幾次供應危機中,逐漸從以化石能源為中心之產業結構,轉向以綠能為主之產業結構,為讓自身能最大限度地利用脫碳相關技術,並在維持能源穩定供應的同時,強化日本產業競爭力,日本經濟產業省於2022年12月23日公布「實現綠色轉型基本方針(草案)」(GX実現に向けた基本方針),提出未來10年政策藍圖,目前正於全國各地辦理意見交流會,徵集民眾意見。

  根據上述方針草案,日本未來將採取之措施包括:(1)透過《能源使用合理化法》(エネルギーの使用の合理化に関する法律)徹底推動節能、製造業結構轉型為碳循環型生產體制,並導入蓄電池和控制系統;(2)再生能源成為主力電源,2030年再生能源占比達到36-38%;(3)2030年核能占比達到20-22%;(4)導入氫能、尿素等新能源,於2025年大阪萬博將進行實驗,並參酌外國實際案例,以安全為前提,制定合理之氫能安全戰略及國際標準;(5)整備電力及瓦斯市場,以確保供應穩定;(6)強化資源外交及國際合作,避免因依賴外國資源而產生斷鏈危機;(7)推動蓄電池產業;(8)促進資源循環;(9)運輸部門綠色轉型,包括下一世代汽車、飛機、船舶、鐵路、人物流等;(10)以脫碳為目的之數位投資;(11)住宅、建築物節能;(12)基礎設施投資;(13)碳捕捉技術;(14)食材、農林水產業轉型等。

  除上述措施外,日本亦將運用綠色經濟轉型債券(暫定)及各種金融手段,支援綠色轉型前期投資。相關法案預計於下次國會提出,並於兩年內檢討具體措施。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本制定綠色轉型基本方針草案,規劃未來10年政策藍圖, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8953&no=55&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

美國網路安全暨基礎設施安全局(CISA)成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,JCDC),將領導推動國家網路聯防計畫

  美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency,以下簡稱CISA)於2021年8月宣布成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,以下簡稱JCDC),依據《國防授權法》(National Defense Authorization Act of 2021, NDAA)所賦予的權限,匯集公私部門協力合作,以共同抵禦關鍵基礎設施的網路威脅,從而引領國家網路防禦計畫的制定。   聯合網路防禦協作辦公室(JCDC's office)將由具代表性的聯邦政府單位所組成,包括國土安全部(Department of Homeland Security, DHS)、司法部(Department of Justice, DOJ)、美國網路司令部(United States Cyber Command, USCYBERCOM)、國家安全局(National Security Agency, NSA)、聯邦調查局(Federal Bureau of Investigation, FBI)和國家情報總監辦公室(Office of the Director of National Intelligence, ODNI)。此外,JCDC將與自願參與的夥伴合作、協商,包括州、地方、部落和地區政府、資訊共享與分析組織和中心(ISAOs/ISACs),以及關鍵資訊系統的擁有者和營運商,以及其他私人企業實體等(例如:Microsoft、Amazon、google等服務提供商)。   目的在藉由這項新的合作機制,協調跨聯邦部門、各州地方政府、民間或組織等合作夥伴,來識別、防禦、檢測和應對涉及國家利益或關鍵基礎設施的惡意網路攻擊,尤其是勒索軟體,同時建立事件應變框架,進而提升國家整體資安防護和應變能力。   是以,JCDC此一新單位有以下特點: 具獨特的公私部門規劃要求和能力。 落實有效協調機制。 建立一套共同風險優先項目,並提供共享資訊。 制定、協調網路防禦計畫。 進行聯合演練和評估,以妥適衡量網路防禦行動的有效性。   而JCDC主要功能,整理如下: 全面、全國性的計畫,以處理穩定操作和事件期間的風險。 對情資進行分析,使公私合作夥伴間能採取應對風險的協調行動。 整合網路防禦能力,以保護國家的關鍵基礎設施。 確保網路防禦行動計畫具有適當性,以抵禦對方針對美國發動的網路攻擊。 計畫和合作的機動性,以滿足公私部門的網路防禦需求。 制度化的演練和評估,以持續衡量網路防禦計畫和能力的有效性。 與特定風險管理部門(Sector Risk Management Agencies, SRMAs)密切合作(例如:國土安全部-通訊部門、關鍵製造部門、資訊技術等),將其獨特專業知識用於量身定制計畫,以應對風險。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP