近年來,關於「競業禁止條款」之合法性及有效性等,一直是被廣泛討論的議題,在2023年1月5日,美國聯邦貿易委員會(Federal Trade Commission, FTC)發布禁止「競業禁止條款」之提案,並指出依調查結果顯示,其造成勞工薪資降低及壓抑流動性等負面影響,故企業未來可能須透過主張《統一營業秘密法》(Uniform Trade Secrets Act)或《防衛營業秘密法》(Defend Trade Secrets Act)等,以保護營業秘密。同時應值注意者為,有論者提出未來解決方案為企業應推動自動化營業秘密管理系統,而其中一個必要元素是應採取「資料存證」措施,以證明營業秘密存在及擁有。
所謂自動化營業秘密管理系統,即透過工具,對於營業秘密進行「識別」與「評估」,並應對於不具有經濟價值的資訊進行解密。惟為避免增加營業秘密外洩風險,故相關系統應僅留存後設資料。與此同時,為取得盜用營業秘密相關的勝訴裁判,除應留存及保護任何時點的後設資料外,更應採取能夠證明營業秘密存在及擁有之措施,如透過雜湊值或區塊鏈等技術進行「資料存證」,以確保能夠在訴訟上提供必要證據。
最後,近期司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同規劃與建置「司法聯盟鏈」機制,藉由區塊鏈技術,並結合已通過經濟部智慧財產局審查核准之b-JADE證明標章,明定嚴謹之數位資料管理要求,以期強化數位證據同一性及建立簡便驗真程序。因此,未來企業若落實b-JADE證明標章所定之管理要求,將幫助營業秘密數位資料通過驗真程序。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
隨著3D印表機的價格日趨親民、3D列印設計檔案於網際網路交流越趨頻繁,以及預期3D列印技術在未來的應用會更加精進與複雜化,3D列印技術於醫療器材製造面所帶來的影響,已經逐漸引起美國食品藥物管理局(FDA)的關注。 在近期FDA Voice Blog posting中,FDA注意到使用3D列印所製造出的醫療器材已經使用於FDA所批准的臨床干預行為(FDA-cleared clinical interventions),並預料未來將會有更多3D列印醫療器材投入;同時,FDA科學及工程實驗辦公室(FDA’s Office of Science and Engineering Laboratories)也對於3D列印技術就醫療器材製造所帶來的影響進行調查,且CDRH功能表現與器材使用實驗室(CDRH’s Functional Performance and Device Use Laboratory)也正開發與採用電腦模組化方法來評估小規模設計變更於醫療器材使用安全性所帶來的影響。此外,固體力學實驗室(Laboratory of Solid Mechanics)也正著手研究3D列印素材於列印過程中對於醫療器材耐久性與堅固性所帶來的影響。 對於3D列印就醫療器材製造所帶來的法制面挑戰,在Focus noted in August 2013中,其論及的問題包含:藉由3D列印所製造的醫療器材,由於其未經由品質檢證是否不應將其視為是醫療器材?3D列印醫療器材是否需於FDA註冊登記?於網路分享的3D列印設計檔案,由於未事先做出醫療器材風險與效益分析,FDA是否應將其視為是未授權推廣等問題。 針對3D列印於醫療器材製造所帶來的影響,CDRH預計近期推出相關的管理指引,然FDA認為在該管理指引推出前,必須先行召開公聽會來援引公眾意見作為該管理指引的建議參考。而就該公聽會所討論的議題,主要依列印前、列印中與列印後區分三階段不同議題。列印前議題討論包含但不限於材料化學、物理特性、可回收性、部分重製性與過程有效性等;列印中議題討論包含但不限於列印過程特性、軟體使用、後製程序與額外加工等;列印後議題討論則包含但不限於清潔/多餘材料去除、消毒與生物相容性複雜度影響、最終裝置力學測定與檢證等議題。
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
何謂「工業4.1J(Japan Industry 4.1J)」?自德國「工業4.0」,開啟所謂第4次工業革命以來,各國政府皆相繼投入資源進行相關計畫,如美國之「先進製造夥伴計畫(Advanced Manufacturing Partnership,AMP)」中國大陸之「中國製造2024」,以及我國之「生產力4.0」等等。 而日本不同於上述其他國家,日本版的工業4.0稱為「工業4.1J」,該計畫並非由國家來主導,而係由民間公司Virtual Engineering Community(VEC)及NTT Communications於2015年3月10日所啟動的一項實證實驗,旨在確認「工業4.1J」之各項技術要件,並且該項目成果非僅提供給VEC之會員,將對所有企業及公眾公開。而所謂的「4.1」表示安全級別比工業4.0更高一級,「 J」則表示源自於日本(Japan)。 日本之「工業4.1J」的運行架構說明如述:首先,將會利用控制系統蒐集相關數據;第二,在雲端平台上記錄及累積數據資料;第三進行即時分析;最後則是透過專家進行事件檢測、分析故障原因並恢復生產、提出安全改善建議等等。