美國商務部(Department of Commerce, DOC)旗下國家標準及技術研究院(National Institute of Standards and Technology, NIST)於2023年2月28日發布《晶片與科學法》(CHIPS and Science Act)補助具體內容,重點如下:
一、申請時間:補助採滾動式錄取模式(rolling basis),先進製程製造補助將於2023年3月31日起開放預先申請(pre-application)與正式申請(full application);成熟製程與其他相關生產設施的製造補助,將分別於2023年5月1日及6月26日開放預先申請及正式申請。
二、補助方式與金額:補助分為直接補助(direct funding)、聯邦政府貸款(federal loans)或第三人提供貸款並由聯邦政府提供擔保(federal guarantees of third-party loans)。直接補助的金額上限預計為預估資本支出的15%。每個計畫可透過一種以上之方式獲得補助,然整體補助金額不得超出預估資本支出的35%。
三、申請流程
1.意向聲明(statement of interest):申請人須提供半導體製造工廠投資計畫的簡要說明,俾利NIST旗下晶片計畫辦公室(CHIPS Program Office)為未來審查進行準備。
2.預先申請:申請人提供更詳盡的計畫內容。晶片計畫辦公室將給予調整意見。
3.正式申請:依照晶片計畫辦公室給予的意見修改後,申請人應遞交完整的計畫申請書,內容必須包含投資計畫的技術與經濟可行性之分析。晶片辦公室審核完畢後,會與申請人簽訂不具約束力的初步備忘錄(non-binding Preliminary Memorandum of Terms),記載補助方式與金額。
4.盡職調查(due diligence):在經過上述程序後,晶片計畫辦公室如認為申請人合理且可能(reasonably likely)取得補助,將對申請人進行盡職調查。
5.補助發放:通過盡職調查後,DOC將開始準備發放補助。
四、補助規範與限制
1.禁止買回庫藏股(stock buybacks):受補助者不得將補助款用於買回庫藏股。
2.人力資源計畫:申請人要求的補助金額若超過1億5千萬美元,須額外說明將如何提供員工可負擔且高品質的子女托育服務。
3.建造期限:受補助者必須於DOC所決定的特定日期(target dates)前開始或完成廠房建造,否則DOC會視情況決定是否收回補助。
4.分潤:補助金額超過1億5千萬美元時,受補助者須與美國政府分享超過申請計畫中所預估之收益,但最高不超過直接補助金額的75%。
5.不得於特定國家擴產與進行研究:受補助者於10年內或與DOC合意的期間內,除特定情況下(15 U.S.C. § 4652(a)(6)(C)),不得於特定國家,如中國,進行大規模半導體製造的擴產(material expansion)、聯合研究(joint research)或技術授權(technology licensing),違反者將會被DOC收回全額補助。
本文為「經濟部產業技術司科技專案成果」
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。 JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。
歐盟執委會提出「歐盟開放資訊戰略」為達成歐盟數位議程(Digital Agenda)中的單一數位市場(Digital Single Market)目標,歐盟執委會(EU Commission)提出了「開放資訊戰略」(Open Data Strategy for Europe)措施,預計可為歐洲地區創造出每年超過400億歐元的產值。 此方案係利用歐盟各會員國政府已蒐集的大量資訊,藉由免費或低收費的方式,提供全歐洲任意目的使用。目前英國、法國已完成相關整備,蓄勢待發 。 歐盟此目標包含三個具體措施:a.歐盟執委會將率先開始,利用新網站(data portals)免費開放資訊;b.建立全歐洲開放資訊的公平競爭環境;c.從2011至2013年投入共1億歐元,以進行資料處理研究。 此外執委會建議修正2003年公共部門資訊再利用指令(2003/98/EC),包含:a.所有公部門蒐集的資訊,在無妨礙著作權情形下,應開放予所有人任何目的使用;b.除了必要成本外,不得收取其他費用;c.任何機器均可使用,以確保資料有效重新利用;d.引入監管機制;e.擴展指令覆蓋範圍,包含博物館與圖書館等。 歐盟執委會現已著手建立新的專屬公開網站,未來該網站將可連結到歐盟各會員國公開資訊。該網站預計於2012年春季正式推出。
美國競業禁止條款之修法趨勢及對離職員工之管理建議美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。 美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。 聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如: 1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等); 2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案); 3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度; 4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。 本文同步刊登於TIPS網站(https://www.tips.org.tw)