歐盟航空安全局(European Union Aviation Safety Agency, EASA)於2022年10月13日發布全球首件「最大起飛重量不逾六百公斤之無人機系統噪音量測指南」(Guidelines on Noise Measurement of Unmanned Aircraft Systems Lighter than 600 kg Operating in the Specific Category),適用於各式各樣的無人機設計,包括多旋翼機(multicopters)、固定翼航空器(fixed-wing aircraft)、直升機與動力起降航空器(powered-lift aircraft)等。
該指南旨在提供低度與中度風險(Low and Medium Risk)特定類別無人機運行時,具一致性的噪音量測程序與方法。該方法係考量實際層面與心理聲學(psychoacoustics),即有關人類對於無人機聲音的感知,設計為提供可重複且準確量測噪音,可量測最大起飛重量(Maximum Take-Off Weight, MTOM)小於600公斤的無人機,以落實歐盟環境保護的高度水準,並防止噪音對人體健康的重大影響。而所謂特定類別(specific category)包括包裹遞送、電力巡檢、鳥類管制(bird control)、測繪服務(mapping services)、空中監視(aerial surveillance)等活動。
此份指南雖不具強制性,亦非無人機認證規範,然而噪音是許多歐洲民眾所關注的問題,各國航空主管機關仍可以該指南為基準要求營運商,使之在自然公園或人口稠密區域等敏感環境運行無人機時可降低噪音。同時,無人機製造商、營運商或噪音量測組織,亦可依據該指南確立與特定設計及操作相關的噪音水準。此外,可將由此而生的噪音水準報告提供給EASA,以建立可供營運商與主管機關使用的線上公眾資料庫(online public repository)。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會(European Commission)於2022年3月30日提出了一項「目標地球倡議(the Destination Earth initiative)」,希望建立「目標地球系統」(Destination Earth system,以下簡稱DestinE系統),作為實踐歐洲「綠色協議」(European Green Deal)、「數位化戰略」(EU’s Digital Strategy)此兩項計畫的一部分。 DestinE系統係旨在全球範圍內開發一個高度精確的地球數位模型,透過整合、存取具價值性的資料與人工智慧進行資料分析等技術,以監測、建模和預測環境變化、自然災害和人類社會經濟之影響,以及後續可能的因應和緩解策略。未來希望將高品質的資訊、數位服務、模型預測提供予公部門運用,接著逐步開放給科學界、私部門、公眾等用戶,將有助於應對氣候變遷、實現綠色數位轉型,並支持塑造歐洲的數位未來。 為實現此一項目,歐盟執委會預計在2024年中前由數位歐洲計畫(Digital Europe Programme)投入1.5億歐元,並與科學、工業領域單位合作,包含歐洲航太總署(European Space Agency, ESA)、中期天氣預報中心(European Centre for Medium-Range Weather Forecasts , ECMWF)、氣象衛星開發組織(European Organisation for the Exploitation of Meteorological Satellites , EUMETSAT)等,透過建立核心平台逐步發展為DestinE系統,稱之為數位分身(Digital Twins)。 是以,DestinE系統將允許用戶存取地圖資訊(thematic information)、服務、模型、場景、模擬、預測、視覺化,其系統主要組成分為以下三者: 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 核心服務平台(Core Service Platform)--該平台將基於開放、靈活和安全的雲端運算系統,提供決策工具、應用程式和服務,兼具大規模資料分析與地球系統監測、模擬和預測能力的數位建模和開放模擬平台。同時,也將為DestinE用戶提供專屬資源、整合數據、開發各自的應用程式。該平台服務的採購、相關維運將由歐洲航太總署負責。 DestinE資料湖泊( DestinE Data Lake)--資料湖泊將提供核心服務平台、數位分身所需的獨立專用資料存取空間,並提供多元的資料來源和有效管理與DestinE系統用戶共享的資料,同時提高、擴大資料處理和服務。其將由歐洲氣象衛星開發組織負責營運。 數位分身(Digital Twins)-- DestinE 數位分身將依據不同的地球科學領域主題進行即時觀測、分類,例如極端自然災害事件、因應氣候變遷、海洋或生物多樣性,最終目標是整合這些數位複製內容(digital replicas),形成、建立全面性的地球數位分身綜合系統。因此,DestinE 數位分身將為用戶提供量身打造的高品質資料,用於用戶特定的場景模擬開發、決策。而該DestinE 數位分身將由歐洲中期天氣預報中心進行開發。 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 根據豐富的觀測資料集,對地球系統進行準確、和動態的模擬,例如:關注與社會相關的領域、氣候變化的區域影響、自然災害、海洋生態系統或城市空間。 提高、加強預測能力並發揮最大化影響,例如:保護生物多樣性、管理水資源、可再生能源和糧食資源,以及減輕災害風險。 支持歐盟相關政策的制定和實施,例如:監測和模擬地球發展(陸地、海洋、大氣、生物圈)與人為干預,藉以評估現有環境政策和立法措施的影響,作為制定未來政策的依據。或預測環境災難、衍生的的社會經濟危機,以挽救生命並避免大規模經濟衰退。抑或透過開發和測試場景,實現永續發展。
歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施歐盟對於體外診療器材(In Vitro Diagnostic Medical Devices,以下簡稱IVDs)之管制,最早起始於1998年的體外診療器材指令(Directive 98/79/EC on In Vitro Diagnostic Medical Devices,以下簡稱「1998年IVDD指令」),該指令依IVDs是否具有侵入性、接觸病人的時間長短及是否需要能源加以驅動等條件,進一步區分為四種風險等級:第1級(Class I)-低風險性、第2a級(Class IIa)-低至中風險性、第2b級(Class IIb)-中至高風險性、第3級(Class III)-高風險性。Class I因風險性最低,故1998年IVDD指令僅要求廠商建立品管系統、保留產品技術檔案、並自為符合性聲明後,即得於市場上流通;Class IIa與Class IIb則由於風險略高,所建立之品管系統需經過「符合性評鑑」;而Class III的風險最高,故其品管系統除須符合前述要求外,更應由經歐盟認證的代檢機構(Notified Body)進行審查,通過前述評鑑及審查後,始可於歐洲市場流通使用。 然而,隨著科學及技術的進步,市場上不斷出現創新性的產品,使得1998年IVDD指令已逐漸無法滿足管理需求,輔以各會員國對於指令的解釋和實施各有不同,致使歐盟內部在病患及公共健康的保護上有程度不一的落差,為歐盟單一市場的運作埋下隱憂。因此,歐盟執委會(European Commission)於2012年9月26日提出新的管制架構(Proposal for a Regulation of the European Parliament and of the Council on in vitro diagnostic devices),其主要變革包括: 1. 擴大IVDs的定義:將IVDs的範圍擴及用以獲取醫療狀況或疾病罹患傾向資訊(如基因檢測)的器材及醫療軟體(medical software)等。 2. 新的分類標準及評估程序:將診療器材重新分為A、B、C、D四類,A類為風險最低,D類為風險最高。A類維持原先1998年IVDD指令中的廠商自我管控機制,但當A類器材欲進行臨床測試(near-patient testing)、具備評量功能或用於殺菌者,須先由代檢機構就其設計、評量功能及殺菌過程進行驗證。B類器材因風險略高,故須通過代檢機構之品管系統審查;C類產品除品管系統審查外,需再提交產品樣本的技術文件;而D類由於風險最高,除前述品管系統審查外,需經過核准使能進入市場。至於A、B、C、D類產品進入市場後,代檢機構會定期進行上市後(the post-market phase)監控。 3. 導入認證人員(qualified person,簡稱GP):診療器材製造商應於組織內導入GP人員,負責確保製造商組織內部的一切法令遵循事宜。 4. 落實提升透明度(transparency)之相關措施:為確保醫療器材的安全性和效能,要求:(1) 歐盟市場內之經濟經營商(economic operator)應能夠辨認IVDs的供應者及被供應者;(2) 製造商應將單一裝置辨識碼(Unique Device Identification)導入產品中,以利日後之追蹤;(3) 歐盟單一市場中的所有製造商及進口商,應將其企業及產品資訊於歐洲資料庫(European database)中進行註冊;(4) 製造商有義務向大眾公開高風險性裝置的安全性與效能等相關說明資訊。 歐盟執委會已提交新管制架構予歐洲議會,若順利通過將可望於2015年起正式實施,未來將對歐洲IVDs產業有何影響,值得持續觀察之。
日本經產省提出創新政策落實方向由於日本近年研發品質、數量停滯不前,加上企業研發效率亦落後於外國,經濟產業省(簡稱經產省)於2024年6月21日從三個面向提出政策建議,期能打造成功創新模式。重點如下: 1.發揮新創企業與大企業優勢,促進研發投資 由於研發投資具有回收期間長、獲利不確定等特徵,短時內難以看到成效,故為鼓勵企業持續投入研發,經產省擬制定研發投資效率評價指標,並將透過「新創培育五年計畫」(「スタートアップ育成5カ年計画)下之「新創推動框架」(スタートアップ推進枠),將科研預算優先分配予重點項目,以建立友善研發環境。 2.透過新創資源流動,促進商業化和創造附加價值 新創企業初期往往受限於人力、技術和設備等資源不足問題,難以快速成長及擴張。為解決上述問題,經產省擬制定「跨領域學習」指引及案例集,期能促進新創資源流動,打造創新生態系統。 3.以需求為導向之前瞻技術研發 部份具有高度發展潛力之前瞻技術,如量子和核融合等,因研發風險較高且市場需求不明,將由新能源‧產業技術綜合開發機構(新エネルギー・産業技術総合開発機構)、產業技術綜合研究所(產業技術綜合研究所)等法人進行研發。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現