歐盟航空安全局(European Union Aviation Safety Agency, EASA)於2022年10月13日發布全球首件「最大起飛重量不逾六百公斤之無人機系統噪音量測指南」(Guidelines on Noise Measurement of Unmanned Aircraft Systems Lighter than 600 kg Operating in the Specific Category),適用於各式各樣的無人機設計,包括多旋翼機(multicopters)、固定翼航空器(fixed-wing aircraft)、直升機與動力起降航空器(powered-lift aircraft)等。
該指南旨在提供低度與中度風險(Low and Medium Risk)特定類別無人機運行時,具一致性的噪音量測程序與方法。該方法係考量實際層面與心理聲學(psychoacoustics),即有關人類對於無人機聲音的感知,設計為提供可重複且準確量測噪音,可量測最大起飛重量(Maximum Take-Off Weight, MTOM)小於600公斤的無人機,以落實歐盟環境保護的高度水準,並防止噪音對人體健康的重大影響。而所謂特定類別(specific category)包括包裹遞送、電力巡檢、鳥類管制(bird control)、測繪服務(mapping services)、空中監視(aerial surveillance)等活動。
此份指南雖不具強制性,亦非無人機認證規範,然而噪音是許多歐洲民眾所關注的問題,各國航空主管機關仍可以該指南為基準要求營運商,使之在自然公園或人口稠密區域等敏感環境運行無人機時可降低噪音。同時,無人機製造商、營運商或噪音量測組織,亦可依據該指南確立與特定設計及操作相關的噪音水準。此外,可將由此而生的噪音水準報告提供給EASA,以建立可供營運商與主管機關使用的線上公眾資料庫(online public repository)。
本文為「經濟部產業技術司科技專案成果」
掌管網域名稱規則的組織—ICANN,於2008年6月底透過總裁Paul Twomey表示,其將計畫提出新的通用型網域名稱(Top-level domains, “TLD”),以為增加網域名稱的選擇性做準備,並且讓想透過網域名稱表現自我的使用者,有更多選擇模式。目前為止,網域名稱使用者可選擇的通用型網域名稱限於21種,例如.com、.org、.info等。 根據ICANN新的規劃,申請新的通用型網域名稱者,可以自己選擇其網域名稱,並且進行登記。所有的新申請者不但可以專屬使用其所選擇的網域名稱,也可以將該網域名稱透過登記移轉來進行買賣。 從ICANN的聲明來看,其預估申請者將會以群組做為主要的選擇,例如現有旅遊業者的.travel,另外以城市作為通用型網域名稱的需求也相當高,例如.nyc、.paris。 ICANN目前計畫限定一個期間來接受全世界的團體來申請通用型網域名稱,預估第一輪的申請期限截止後,ICANN將會透過預計9個月的評選程序,來處理所有的通用型網域名稱申請。目前ICANN的新計畫預計於2009年第二季開始接受申請。
日本制定民間個人健康紀錄業者蒐集、處理、利用健康資料之基本指引草案日本厚生勞動省、經濟產業省和總務省共同於2021年2月19日公布「有關民間個人健康紀錄(Personal Health Record, PHR)業者蒐集、處理、利用健康資料之基本指引」(民間PHR事業者による健診等情報の取扱いに関する基本的指針)草案,檢討民間PHR業者提供PHR服務之應遵守事項,希望建立正確掌握和利用個人、家族健康診斷或病例等健康資料之電子紀錄制度。 本指引所稱之「健康資料」,係指可用於個人自身健康管理之敏感性個人資料,如預防接種、健康診斷、用藥資訊等;而適用本指引之業者為蒐集、處理、利用上開健康資料並提供PHR服務之業者。根據指引規定,PHR業者應針對資訊安全對策、個人資料處理、健康資料之保存管理和相互運用性及其他等4大面向採取適當措施。首先,在資訊安全對策部份,業者需取得風險管理系統之第三方認證(如資訊安全管理系統制度(ISMS));其次,針對個人資料,業者應制定隱私政策和服務利用規約,並遵守個資法規定;然後,為確保健康資料之保存管理和相互運用性,系統應具備雙向資料傳輸之功能;最後,本指引提供檢核表供業者自行檢查,業者亦應在網站上公佈自行檢查結果。
「反間諜程式法草案」於參議院尋求闖關通過美國眾議院已於本週(2007.05.23)口頭表決通過「反間諜程式法草案」,未來將有待於參議院表決通過後,公佈施行該法。 間諜程式通常是指涉收集電腦使用者資訊的惡意軟體,該惡意軟體通常係安裝免費軟體中不知名的某個套件,或者是隱含在所下載網路遊戲程式中、不請自來的廣告頁面或者電腦中毒所導致。其危險之處即在於,該惡意軟體將使電腦使用者的使用者帳號、密碼以及個人金融帳目細節等等個人資料傳遞出去,以詐欺該使用者。 由於該法案要求程式開發商於使用者下載此類程式前,需要提醒使用者以及獲得他們的同意,因此,軟體產業非常反對該項規範。 據了解,美國眾議院已於2004年及2005年以壓倒性的勝利表決通過「反間諜軟體法案」,惟當時該法案並無法獲得參議院的青睞,而慘遭否決。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。