德國經濟及氣候保護部科學顧問委員會於2023年2月8日公布《向氣候中和產業轉型:綠色領導市場和氣候保護協議》(Transformation zu einer klimaneutralen Industrie: Grüne Leitmärkte und Klimaschutzverträge)報告,擬透過綠色領導市場(Grüne Leitmärkte)和氣候保護協議(Klimaschutzverträge)兩種工具措施,在基礎⼯業中⼤規模推廣氣候中和⽣產技術。
科學顧問委員會指出,目前僅靠碳定價已無法調整在氣候保護面向的市場失靈問題,加上基礎工業(例如鋼鐵、水泥、合成氨等)的氣候友好型技術投資上缺乏經濟效益,因此政府需要採取額外措施來實現基礎工業的氣候中和。
綠⾊領導市場則是國家建立或支持以氣候中和⽅式⽣產的原物料(例如綠⾊鋼鐵)的市場,政府採購中可優先使⽤綠⾊原料,也可以透過監管措施,規定私⼈和企業在⼀定範圍內只能使⽤含有⼀定⽐例綠⾊原料的產品。氣候保護協議則是國家與企業間,就⽣產氣候友好型產品簽訂契約,保證企業將獲得15年的補償⾦,以補償採行氣候中和⽣產術所產生較⾼的成本,同時亦保護企業免受碳定價波動和其他⾵險的影響。
本文為「經濟部產業技術司科技專案成果」
美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於2014年7月更新並公布了醫療器材上市前許可(premarket notification)的指引(guidance)(該指引名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification Guidance for Industry and Food and Drug Administration Staff,以下簡稱510(k)指引),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指引主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材業者更清楚FDA所重視的審查程序及內容。 歐盟對醫療器材上市前之審查亦有相關指令,分別為一般醫療器材指令(Medical Device Directive,簡稱MDD)、活體植入醫材指令(Active Implantable Medical Devices Directive,簡稱AIMDD)及。歐盟規定醫療器材在上市前,必須符合上市前所規定之內容以正當在歐盟、歐洲經濟地區(European Economic Area)及瑞士市場販售使用。然而特別的是,不同於美國上市前的醫療器材由主管機關FDA進行審查,歐洲藥物管理局(The European Medicines Agency of the EU)並不參與醫療器材的審核程序,而是交由歐盟會員國的私人認證機構對醫療器材做評估。
數位內容傳輸新服務:推動數位內容產業的另一個面向伊格奈科技公司(Ignite Technologies Inc.)推出了一款數位內容傳播輔助工具,可幫助企業傳輸大量的數位內容檔案。此項名為伊格奈溝通者(Ignite Communicator)的服務,能協助企業傳輸各種數位內容的檔案,包括視訊、圖形及軟體。此項工具最大的特色,在於能跨越各種不同的作業平台,進行檔案傳輸。 伊格奈此項新服務,能協助企業傳遞資料給遠端行動的使用者,亦可聯結企業夥伴或客戶各種不同層級的網路系統。對於內容豐富而檔案龐大的數位內容傳播而言,此類跨平台的傳播技術與服務,對於 B2B 與 B2C 的數位內容應用,都是一大推動助力。
新加坡智慧財產局發布2023年智財調查,分析企業無形資產運用現況新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2023年9月4日發布《2023年智慧財產調查》(Singapore IP Survey 2023),調查結果顯示,企業最重視的智慧財產為品牌、技術/製程、機密資訊。 為瞭解企業對無形資產(Intangible Assets, 以下簡稱IA)和智慧財產權(Intellectual Property, 以下簡稱IP)的看法和運用現況,以制定強化企業競爭力之智財政策,新加坡政府自2021年發布《2030年智慧財產戰略》(Singapore IP Strategy 2030, SIPS 2030)起,每2年發布一次智財調查。本次調查於2023年2月至3月間進行,對象為新加坡500多家企業,調查結果顯示,企業最重視的前三種IP類型依序為: 1. 有35%的企業表示擁有強大品牌(strong brand)相當重要。 2. 有32%的企業認為擁有新技術及/或新製程(new technology and/or process)相當重要。 3. 有31%的企業認為擁有機密資訊(confidential information)相當重要。 此外,有15%的企業表示,其商業價值的主要收益來自於其IA/IP;且所有受訪企業中有不少企業表示IA/IP有助於提升公司績效,包含: 1. 有17%的企業認為有助於「吸引更多商業合作夥伴」; 2. 有17%的企業認為有助於「提升商業競爭力」; 3. 有15%的企業認為有助於「拓展國際市場」; 4. 有14%的企業認為有助於「增加獲利」。 再者,有80%的企業期待有更多機會運用IA/IP獲得融資。同時,有92%企業在進行相關智財活動(IP activities)時未申請任何政府補助,如新加坡企業發展局(Enterprise Singapore, ESG)的企業發展補助(Enterprise Development Grant, EDG),其中有50%以上的企業表示是因為不清楚相關補助資訊。 最後,僅有15%的企業對其IA/IP進行單獨評價(standalone valuation),而未與其他資產合併評價,但其中僅不到一半是委託評價分析師(Certified Valuation Analyst, CVA)進行。 根據調查結果,新加坡政府認為企業雖擁有大量的IA/IP,但尚未瞭解其價值,導致無法有效地將其IA/IP商業化。因此,新加坡政府於2023年9月4日同時發布《無形資產揭露框架》(Intangibles Disclosure Framework, IDF),鼓勵企業以系統化方式主動對外揭露所持有之IA/IP,藉此協助企業創造更高的價值。我國資策會科法所亦從2013年開始,每2年針對國內上市上櫃公司調查智財管理需求及現況;2021年調查報告顯示,86%的企業已進行智財布局、84%企業有配置智財人員、94%企業有編列智財經費等,顯示我國企業對於智財管理及策略愈來愈重視。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。