醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

資訊工業策進會科技法律研究所
2023年05月31日

過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1]

研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2]

在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3]

因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4]

營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5]

在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6]

與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7]

因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8]

惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9]

總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10]

而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。

本文同步刊登於TIPS網站(https://www.tips.org.tw

[1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023).

[2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023).

[3]Id.

[4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023)

[5]Id.

[6]John Quinn, supra note 2.

[7]Id.

[8]Collins-Chase et al., supra note 4.

[9]John Quinn, supra note 2.

[10]Havranek et al., supra note 1.

[11]Collins-Chase et al., supra note 4.

你可能會想參加
※ 醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8994&no=55&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
全球Open Data成功及挑戰之關鍵報告

  根據全球資訊網基金會(World Wide Web Foundation)及英國開放資料協會(Open Data Institute)指出,全球77個國家正進行Open Data政府開放資料政策,但實際運作上,各國政府提供公眾近用之資料集佔不到全世界政府資料的10%,呈現各國Open Data政策實行還有很大進步空間。   全球資訊網基金會與英國開放資料協會所合作的網絡平台-政府開放資料研究網絡(Open Data Research Network),針對各國政府開放資料執行狀況進行評比並提出Open Data Barometer研究報告。此報告指出,英國政府開放資料執行及成效排名第一,其次排名陸續為美國、瑞典、紐西蘭、丹麥、挪威。除此之外,專以倡導開放知識、資料、內容的國際非政府組織,開放知識基金會(Open Knowledge Foundation),則提出基於Open Data可用性及近用性進行70個國家的排名,英國仍是第一名,其次為美國、丹麥、挪威、荷蘭。從上述兩項研究報告中,英國在Open Data政策落實的成效受到高度肯定,而歐美地區仍在Open Data政策實行上領先世界其他地區的國家。   Open Data Barometer研究報告指出,目前各國政府傾向不提供具潛在爭議性的政府資料,但此類資料往往具再利用價值,例如政府財政預算及交易資料、公司登記、土地登記等相關資料。全球資訊網創始人Berners Lee表示,政府及企業不應考量提供資料集而無法收取費用,或有意掩蓋政治敏感之資料來保護政治利益,而對於公布會造就人民生活的重大進步但具爭議性之資料集,感到卻步。   目前多數國家開放資料之機器可讀性資料與資料集之免費授權(Open License)皆少於7%,報告中說明全球資料集實際可用性仍偏低,亦發現各國提供資料之收費不僅沒有效率,資料再利用授權關係也不明確,使得企業及使用者處在法律不確定之風險中。   全球面對開放資料的進展雖已有初步成效,但成功經驗仍集中在歐美國家,世界上其他國家在開放資料的可用性及近用性,仍與歐美國家有顯著差距,為能促進全球人民生活福祉及活絡商機,各國政府應更積極地執行開放資料政策,並持續改進。

藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用

  藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。   為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。   此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。   最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。

歐盟執委會提出人工智慧創新計畫,促進歐盟人工智慧技術應用與相關企業發展

2024年1月24日,歐盟執委會(European Commission)推出了人工智慧創新計畫(AI innovation package),支持新創公司和中小企業開發符合歐盟價值觀的人工智慧。該計畫包含以下重要事項: 1.推動歐洲高效能運算聯盟相關之法規修正案(An amendment of the EuroHPC Regulation)。 (1)歐洲高效能運算聯盟是歐盟在2018年依法(Council Regulation (EU) 2021/1173)建立之組織。依該法內容,組織主要目標是在歐盟開發、部署具有極高運算能力的運算系統,為公部門和私人提供強大的運算和資料服務,以支持科學和工業的雙重轉型。 (2)本次法規修正案為歐洲高效能運算聯盟添加了新目標,新目標為建立人工智慧工廠,以促進歐盟對人工智慧的採用和創新。目標細節包含令歐盟取得、推廣人工智慧專用的超級電腦,建立一站式服務以支持歐盟各界開發人工智慧服務、產品及應用程式等。 2.在歐盟執委會下設立人工智慧辦公室,制定歐洲層級的人工智慧政策,並監督政策執行。 3.透過跨國論壇推動以下工作: (1)藉歐洲地平線計畫、數位歐洲計畫,向試圖開發、應用人工智慧的組織提供財政支援。預估將在2027年帶來四十億歐元投資額。 (2)過教育擴張人工智慧人才庫。 (3)鼓勵政府及民眾投資人工智慧新創企業。 (4)加速開發歐洲共同資料空間,供人工智慧社群使用。 (5)支持工業生態系統及公共部門應用人工智慧。應用領域包含機器人、健康、生物技術、製造、行動設備等。 4.歐盟執委會與部分成員國組織了兩個歐洲數位基礎設施聯盟如下: (1)語言科技聯盟(ALT-EDIC): 該聯盟主要工作之一為收集、開發歐洲各國語言模型,供公共部門、企業及未來人工智慧創新計畫使用。聯盟目標為增加歐洲語言資料可用性、維護歐洲語言及文化的多樣性。 (2)城市宇宙聯盟(CitiVERSE EDIC): 主要目標之一是支援城市利用人工智慧,優化各項管理流程。例如交通管理方面,可利用人工智慧模擬空氣品質變化對城市交通狀況的影響,以利政府提出相應解決方案。 目前人工智慧創新計畫的下一步,是先推動歐洲高效能運算聯盟相關之法規修正案。嗣後,透過執行該計畫各項內容,執委會將為歐盟人工智慧政策的實施做好準備。執行該計畫的過程中執委會不僅會支援歐盟各國公共部門採用人工智慧,也會積極推動民間開發、應用人工智慧技術,以提升歐盟競爭力和促進歐盟的永續發展。

政府推動跨部會生質柴油發展計畫,台北縣環保局率先試行生質柴油

  因應國際油價高漲、石油減產危機、京都議定書生效等衝擊,經濟部能源局將整合環保署、農委會,成立跨部會生質柴油發展計畫,計劃2010年達成國內生質柴油產量10萬公秉,替代國內車用柴油使用量約6%。   「生質柴油」乃是指動植物油或廢食用油經過轉化技術後所產生的酯類,直接使用或混合柴油可以作為燃料,為一再生清潔能源;目前台北縣環保局已結合五家客運業者、一家貨運業者、四個公所清潔隊及八里掩埋場,推動四十八輛客運車等添加柴油試運行,以實際了解生質柴油的效益。   試行時間預定至明年二月底止,預計試行車輛行走公里數為 四十四萬八千公里以上,重型機具運轉三百二十六小時以上。台北縣環保局還將安排試行車輛到台北縣林口柴油車動力計檢測站進行綜合排氣檢測,以瞭解車輛使用質柴油的所產生的污染減量成效。

TOP