2023年4月韓國政府公布「數位平台政府(디지털플랫폼정부위원회,Digital Platform Government)實施計畫」,促使政府全面結合人工智慧和資料運用,打破過往部會機關個別發展數位專業的阻隔,為國民提供數位化整合的政府服務,並鼓勵企業創新。
「數位平台政府」為2022年新任總統尹錫悅推行的政府改革措施之一,同年7月頒定組織條例,成立直屬於總統之「數位平台政府委員會」,委任財政、科學、行政及個資保護4部會首長及19位專家組成。數位平台政府實施計畫預計2027年完成,計畫訂出4項數位平台政府關鍵服務任務,任務目標與對應措施如下:
(1)政府為人民服務:建立政府綜合服務窗口,統整中央、地方各級單位之千餘種稅捐、福利等內容,提供如「青年政策整合」之個性化便利服務,以減少人民不便與潛在社會問題。
(2)智慧的一體式政府:擴大機構間資料的共享與利用,打破部會之間、中央和地方政府之間的資料孤島情形,目標串連1.7萬餘的政府系統,成為政府創新基礎設施,以靈活應對快速變化的外部環境。
(3)公私協力的成長平台:打造數位經濟生態系,以交通、安全、能源和城市為初步建置領域,後續擴展到醫療、環境和公共管理等,預計培養1萬家基於此生態系經營的SaaS(Software as a Service,軟體即服務)公司。
(4)可信賴的平台政府:加強人民對個人資料的控制權,將於數位政府平台中引入資料近用記錄檢查和管理功能,並採用「零信任」、「供應鏈安全」等機制提高安全性。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施歐盟對於體外診療器材(In Vitro Diagnostic Medical Devices,以下簡稱IVDs)之管制,最早起始於1998年的體外診療器材指令(Directive 98/79/EC on In Vitro Diagnostic Medical Devices,以下簡稱「1998年IVDD指令」),該指令依IVDs是否具有侵入性、接觸病人的時間長短及是否需要能源加以驅動等條件,進一步區分為四種風險等級:第1級(Class I)-低風險性、第2a級(Class IIa)-低至中風險性、第2b級(Class IIb)-中至高風險性、第3級(Class III)-高風險性。Class I因風險性最低,故1998年IVDD指令僅要求廠商建立品管系統、保留產品技術檔案、並自為符合性聲明後,即得於市場上流通;Class IIa與Class IIb則由於風險略高,所建立之品管系統需經過「符合性評鑑」;而Class III的風險最高,故其品管系統除須符合前述要求外,更應由經歐盟認證的代檢機構(Notified Body)進行審查,通過前述評鑑及審查後,始可於歐洲市場流通使用。 然而,隨著科學及技術的進步,市場上不斷出現創新性的產品,使得1998年IVDD指令已逐漸無法滿足管理需求,輔以各會員國對於指令的解釋和實施各有不同,致使歐盟內部在病患及公共健康的保護上有程度不一的落差,為歐盟單一市場的運作埋下隱憂。因此,歐盟執委會(European Commission)於2012年9月26日提出新的管制架構(Proposal for a Regulation of the European Parliament and of the Council on in vitro diagnostic devices),其主要變革包括: 1. 擴大IVDs的定義:將IVDs的範圍擴及用以獲取醫療狀況或疾病罹患傾向資訊(如基因檢測)的器材及醫療軟體(medical software)等。 2. 新的分類標準及評估程序:將診療器材重新分為A、B、C、D四類,A類為風險最低,D類為風險最高。A類維持原先1998年IVDD指令中的廠商自我管控機制,但當A類器材欲進行臨床測試(near-patient testing)、具備評量功能或用於殺菌者,須先由代檢機構就其設計、評量功能及殺菌過程進行驗證。B類器材因風險略高,故須通過代檢機構之品管系統審查;C類產品除品管系統審查外,需再提交產品樣本的技術文件;而D類由於風險最高,除前述品管系統審查外,需經過核准使能進入市場。至於A、B、C、D類產品進入市場後,代檢機構會定期進行上市後(the post-market phase)監控。 3. 導入認證人員(qualified person,簡稱GP):診療器材製造商應於組織內導入GP人員,負責確保製造商組織內部的一切法令遵循事宜。 4. 落實提升透明度(transparency)之相關措施:為確保醫療器材的安全性和效能,要求:(1) 歐盟市場內之經濟經營商(economic operator)應能夠辨認IVDs的供應者及被供應者;(2) 製造商應將單一裝置辨識碼(Unique Device Identification)導入產品中,以利日後之追蹤;(3) 歐盟單一市場中的所有製造商及進口商,應將其企業及產品資訊於歐洲資料庫(European database)中進行註冊;(4) 製造商有義務向大眾公開高風險性裝置的安全性與效能等相關說明資訊。 歐盟執委會已提交新管制架構予歐洲議會,若順利通過將可望於2015年起正式實施,未來將對歐洲IVDs產業有何影響,值得持續觀察之。