經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:
1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。
2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。
3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。
4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
談美國GMO管理規範之修法趨勢-從「全有全無」到「多階分級」許可管理之制度轉換 OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。