經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:

1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。

2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。

3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。

4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

相關連結
※ 經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9000&no=55&tp=1 (最後瀏覽日:2025/12/27)
引註此篇文章
你可能還會想看
愛爾蘭資料保護委員會發布《控制者資料安全指引》,提供資料控制者關於個人資料安全措施之依循指引

  愛爾蘭資料保護委員會(Ireland's Data Protection Commission)於今(2020)年2月公布控制者資料安全指引(Guidance for Controllers on Data Security),愛爾蘭資料保護委員會表示本指引亦適用於資料處理者。指引內針對17個面向說明控制者於資料處理時應考量之安全措施,分別為:(1)資料蒐集與留存政策(Data Collection and Retention Policies);(2)存取控制(Access Controls);(3)螢幕保護程式(Automatic Screen Savers);(4)加密(Encryption);(5)防毒軟體(Anti-Virus Software);(6)防火牆(Firewalls)(7)程式修補更新(Software Patching);(8)遠端存取(Remote Access);(9)無線網路(Wireless Networks);(10)可攜式設備(Portable Devices);(11)檔案日誌及軌跡紀錄(Logs and Audit Trails);(12)備份系統(Back-Up Systems);(13)事故應變計畫(Incident Response Plans);(14)設備汰除(Disposal of Equipment);(15)實體安全(Physical Security);(16)人為因素(The Human Factor);(17)認證(Certification)。   此外,愛爾蘭資料保護委員會還強調,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第25條與第32條有關資料控制者之義務,可透過「從設計與預設機制著手資料保護(Data protection by design and by default)」,與適當的技術及組織措施等方式,並考量現有技術、執行成本、處理之本質、範圍、脈絡及目的與對當事人權利及自由之風險可能性與嚴重性等因素,以確保其安全措施符合相應資料風險之安全等級。   最後,愛爾蘭資料保護委員會表示資料控制者更應確保其組織內員工瞭解該等安全措施並確實遵守,資料控制者應於制定其資料安全政策時考量到本指引所列各項目,以履行其保護資料安全之義務。

美國司法部發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」之最終規則,以因應國家安全威脅

美國司法部(Department of Justice, DOJ)於2025年1月8日發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」(Preventing Access to U.S. Sensitive Personal Data and Government-Related Data by Countries of Concern or Covered Persons)之最終規則。該規則旨在避免特定國家或個人獲取大量國民敏感個人資料及政府相關資料,以降低國安威脅。 最終規則指出,去識別化敏感個人資料若經大量蒐集,仍可能被重新識別,因此原則上禁止或限制任何美國人在知情的情況下,與受關注的國家或個人進行該等資料的大量交易。其將敏感個人資料定義為社會安全碼、精確地理位置、車輛遙測資訊(vehicle telemetry information)、基因組以及個人健康、財務資料或其他足資識別個人之資料,並定義禁止及限制交易的型態。同時,最終規則除設有若干豁免交易類型外,也定有一般及特別許可交易規定,並授權司法部得核發、修改或撤銷前述許可。一般許可交易的類型將由總檢察長另行公布;特別許可則由總檢察長依個案酌情例外核准。 該規則課予交易方持續報告(reporting)、盡職調查(due diligence)、稽核(audit)、紀錄留存(recordkeeping)等義務,並針對涉及政府相關資訊或美國國民大量敏感個人資訊之商業交易,例如投資、雇傭、資料仲介(data brokerage)及供應商契約,提出資安要求,以降低受關注國家或個人獲取該類特定資訊的風險。最後,該規則定有民事罰款(37萬美金以下)、刑事處罰(100萬美金以下或20年以下徒刑),並設立申訴之救濟措施。

加拿大競爭局發布人工智慧與競爭諮詢報告

加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。

英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢

  英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。   英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。   本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。   上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。

TOP