經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:

1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。

2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。

3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。

4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

相關連結
※ 經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9000&no=64&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
開原碼授權 印度要走自己的路

  印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。    Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。

韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險

韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險 資訊工業策進會科技法律研究所 2024年05月15日 創作內容的流通利用是發揮文化經濟力的核心關鍵,但大數據和機器學習技術的快速發展,人工智慧(以下簡稱AI)已成功應用於許多內容生成,大幅推進圖像、影音、文本的識別、處理、分析、甚至生成等創作成本,但從實現生成式AI而建立基礎模型開始,到AI產出物的生成,均存在可能侵權或被侵權的風險。如何衡平考慮著作權人和使用者立場,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統,已成為各國必須思考因應重要課題。 壹、事件摘要 韓國文化體育觀光部的著作權委員會於2024-01-16發布「生成式人工智慧著作權指引(생성형 AI저작권안내서)」[1],這份指引的目的是希望對涉及生成式人工智慧(Generative AI)產出過程中的各方(AI業者、著作權人、AI使用者)提供有關著作權的注意事項。因為韓國文化與著作權主管機關認為,雖然隨著人工智慧技術的迅速發展,在各個領域的應用為經濟和社會利益產生許多助益,但也出現了一個無法預測的環境,影響到著作權產業和創作活動的各個方面;有人將生成式AI用作創作工具,同時也有人擔心生成式AI可能帶來的經濟損失和就業威脅等問題。因此,韓國著作權委員會成立了由學界、法界和技術界專家以及利害關係人組成的「AI-著作權制度改善工作小組」,於2023年2月成立,以審查生成式AI引發的著作權問題並尋找應對方法,並根據該工作小組的討論而編寫提出該指引[2]。 貳、重點說明 該指引從實現生成式AI而建立基礎模型開始,到AI產出物的生成,聚焦於可能引發法律爭議的數據學習和AI產出物生成部分,從現行著作權法的角度說明AI業者、著作權人和AI使用者需要了解的內容。同時為幫助理解,亦納入介紹目前提供的生成式AI案例以及相關的國內外立法趨勢。但該指引特別說明其發布並非為提供其國會正在討論的著作權法修訂方向,而是為了在未來通過進一步的討論、研究和意見徵求過程等,制定出合理的解決方案,並透過制定衡平考慮著作權人和使用者立場的著作權法律制度,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統[3]。 該指引架構主要分為五大主題[4],同時提供問答集與附錄參考資料。五大主題分別為: 一、生成式AI技術與著作權(생성형 AI 기술과 저작권)[5]:從著作權角度看生成式AI技術,說明生成式AI技術的意義和應用案例。 二、對AI經營者的指導(AI 사업자에 대한 안내사항)[6]:包括生成式AI的學習階段的風險、AI產出物的生成階段的風險、建議採取防範措施以區別AI產出物與人類創作物。例如人工智慧業務經營者在提供相關服務時,確保不會產生與現有作品相同或相似的人工智慧輸出;該指引並建議參酌韓國2023 年 5 月提出的《內容產業振興法》修正提案(法案編號2122180)[7]規定,於人工智慧產出內容中應標示係採用人工智慧技術製作[8]。 三、對著作權所有人的指導(저작권자에 대한 안내사항)[9]:在AI學習階段應考慮的事項、防止AI產出物侵犯著作權的建議。該指引特別建議如果著作權人不希望其作品用於人工智慧學習,可以透過適當方式表達反對,以防止作品被用於人工智慧學習;即使著作權人後來得知自己的作品被用於人工智慧學習,亦可適當地採取技術手段來防止,以避免放任使用產生默許的問題。包括使用例如“Glaze”、“Photo Guard”等此類新的防止技術。 四、對AI使用者的指導(AI 이용자에 대한 안내사항)[10]:提醒注意生成式AI使用可能涉及的著作權侵犯情況,並說明在研究、教育、創作等領域的倫理和政策考慮。例如,提醒使用者將現有作品原樣輸入提示視窗或輸入誘導創作相同或相似作品的文字,從而創建與現有作品相同或相似的人工智慧輸出,然後將其發佈到平台上的方法,將存有侵權風險。即使是用人工智慧學習歌手聲音而重新創作或產生現有歌手的歌曲,也會涉及重製或輸入侵權資料的疑慮。同時,對學術研究或投稿,該指引特別建議在論文等中引用生成人工智慧撰寫的文章之前檢查其來源,並標註特定段落是以什麼人工智慧工具與指令所生成。 五、AI產出的著作權登記(AI 산출물과 저작권 등록)[11]:與AI產出物相關的著作權爭議、AI產出物是否可以登記著作權、有關AI產出物著作權登記的國內外案例、登記時應注意的事項等。該指引強調對於不能被視為在任何表達行為中做出人類創造性貢獻的人工智慧輸出,不可能進行著作權註冊。但在人類以創意方式進行修改、增加等“額外附加工作”(추가 작업)的情況下,該額外工作的部分才會被認定為具有著作權屬性,可以進行著作權登記。但是,著作權註冊的效果僅限於附加的部分(추가 작업한 부분)[12]。 另該指引在問答集中主要釋疑相關疑義,例如:為什麼AI的學習會涉及著作權問題?如果無法確定AI學習所使用的作品的權利人,AI業者如何獲得合法使用權?個別提示用於製作AI產出物也受著作權保護嗎?AI產出物是否無法受到著作權法保護?等等韓國文化與著作權主管機關認為常見或已出現爭議的案例,並依其現行法令或見解趨勢,提供主管機關的看法或解答。 此外,為協助其讀者更深入了解人工智慧的原理、爭議與國際發展趨勢,該指引並精要的整理出下述主題,包括:使用人工神經網絡進行學習的過程、生成式AI相關訴訟和著作權爭議、國內外AI相關應對情況、國內廣播公司和新聞機構有關AI學習資料取得的政策條款等補充明,做為該手冊的附錄資料。特別是其所整理之政策條款,顯示韓國新聞媒體已著手因應被用於AI訓練、學習與內容產生的風險。 參、事件評析 綜觀韓國文化體育觀光部的著作權委員會發布「生成式人工智慧著作權指引」可以看出,韓國認為生成式人工智慧在文創領域的議題,目前較為迫切需要處理的是創作人的著作權於AI訓練時被侵權,與創作時運用AI的侵害他人權利的風險,以及AI生成內容的識別與可保護範圍的界定,但促進人工智慧技術發展和相關產業發展,均為韓國關切議題;AI在未來如何衡平考慮著作權人和使用者立場尚待研析建立共識並透過國會立法修正著作權法律制度。 因此,該手冊除提供AI的技術背景說明外,並強調該指引並非修法政策的官方說明,同時以如何降低風險與維護權益的角度,提醒生成式人工智慧(Generative AI)產出過程中的AI經營者、著作權人、AI使用者,提供有關著作權的注意事項與例如防制技術運用、標註AI生成等預防措施。同時為再進一步幫助理解,除風險說明外並以問答方式強化重點提示,並舉相關媒體的AI訓練資料提供政策實例供參考,內容本身精要但附錄細節說明詳盡,但對於未必了解著作權法令的文創領域從業人員而言,內容簡明且建議措施直接具體,值得我國主管機關訂定相關指引之參考。 [1]「生成型人工智慧著作權指引(생성형 AI저작권안내서)」,檔案下載https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#(最後瀏覽日:2024/05/25)。 [2]詳前註指引之前言,頁6~7。 [3]同前註。 [4]其中尚有第六主題說明未來的法令整備規劃,此部分較屬政策措施方向,較非指引重點,故本文此處未予列入說明重點。 [5]同前註指引,頁7。 [6]同前註指引,頁15。 [7]去年5月,國會文化體育觀光委員會委員長李相憲提出了《內容產業振興法》的部分修正案,其中包括對人工智慧製作的內容強制貼上人工智慧標籤。該修正案目前正在國民議會審議中。https://www.4th.kr/news/articleView.html?idxno=2056520,(最後瀏覽日:2024/05/25)。 [8]同前註1指引,頁21。 [9]同前註1指引,頁23。 [10] 同前註1指引,頁29。 [11]同前註1指引,頁39。 [12]同前註1指引,頁41。

日本發布策略性資料使用之資料管理指南,旨在協助企業將資料視為資產與產品,以策略性的運用資料

日本獨立行政法人情報處理推進機構於2025年6月11日發布《日本發布策略性資料使用之資料管理指南(下稱《指南》)》,旨在協助企業將資料視為資產與產品,以策略性的運用資料。 《指南》指出,資料管理是指企業針對其所擁有的所有資料,進行有效率的收集、整理、保存、共享、分析與運用的一套系統化流程,其目的是為了透過確保資料品質及正確性,協助業務決策,並確保企業的競爭優勢。 在現代企業經營中,資料具有雙重屬性,亦即資料除了是企業重要的經營資產,同時也是企業的產品之一。作為資產的資料如同設備等一般資產,是可供銷售或提供服務的資產,故為最大化其價值並促進成長,需要進行適當管理與投資。此外,由於資料具有可複製性,因此一經外洩,將會造成廣泛且持續性的影響,因此需進行資料管理以確保資料安全性;作為產品的資料則需要有效的整備及管理,以確保維持其正確性所需的品質。 根據《指南》,資料管理的核心在於其需要貫穿資料生命週期,且隨著數位化的進展,對於資料管理亦產生新的需求,例如針對資料多元運用需求之應對、資料須具備可追溯性、針對機密資料之管理方式、確保資料安全性及資料品質等。 為因應新興資料管理需求,《指南》建議可透過評估自身定位、規劃必要體制、思考資料策略及管理架構、盤點企業既有資料及必要資料、培養及建立企業從決策層到執行層的人員均重視資料的資料文化,以及減少不必要或易出錯的作業流程等六項具體措施,建立企業自身貫穿資料生命週期之資料管理流程。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料管理流程,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為資料管理流程設計與實務落實之參考,以強化自身資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應

  日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。   依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。   針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。

TOP