經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段:

1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。

2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。

3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。

4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

相關連結
※ 經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9000&no=64&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
GPL(General Public License,通用公共許可證)即將進行更新修訂

  FSF( Free Software Foundation,自由軟體基金會)於日前公佈,將針對現行版本GPL Version 2進行更新修訂。由於GPL Version 2自1991 年使用至今未曾修改過,隨著軟體開發技術日新月異,新興網路應用議題亦不斷產生,故確時有必要更新修訂。FSF預定在2006年第一週會公布GPL v3草案,詳細說明每一條條文修改的原因及影響,並提供予IT產業、軟體使用者、以及和GPL v3有利害關係的各界人士,共同彙集多方的意見,以期獲得更廣大的效益。   然改寫GPL v3實屬不易。GPL是世界性的授權條款,但現今世界各國的著作權法與專利法等相關法令規範不一,再加上新興的網路應用技術與模式,GPL v3新規範應儘可能將上述要項考量納入增訂,以避免引發爭議;若是相關爭議順利解決的話,預料2007年年初就可將GPL v3擬訂完成。

歐洲議會通過特定一次性塑膠產品禁令

  歐洲議會於2019年3月27日通過特定一次性塑膠產品禁令,該禁令最初由歐盟執委會於2018年5月提出作為「歐盟塑膠戰略」(EU Plastics Strategy)的一部份,其旨在減少特定塑膠產品對環境(特別是水生環境)及人類健康之影響, 同時促進轉向循環經濟,發展創新永續的商業模式。該禁令之規範重點如下: (1) 使用限制:規定若得以其他更環保物質替代的一次性塑膠產品(如棉花棒、一次性餐具、吸管、氣球棒等等) 至遲須於2021年前全面下架;而對於目前無更環保物質可替代的一次性塑膠產品,歐盟各成員國必須採取措施降低其銷售量;另外,自2024年開始,塑膠飲料容器僅限瓶蓋與瓶身有相連設計者,始可上市。 (2) 標示義務:對於被列管的一次性塑膠產品,必須標示其塑膠成分及含量、正確的棄置方式、以及任意棄置對環境的負面影響。 (3) 責任延伸:規定受本禁令所列管一次性塑膠產品之製造商,應按比例分擔有關其產品後續之清除、回收處理及公共教育宣傳成本。 (4) 訂定分類回收比率:訂立廢棄物分類回收量化目標,要求至2025年,一次性塑膠產品的正確分類回收率至少應達77%;至2029年達90%。 (5) 訂定再生料投入比率:規定自2025年開始,製造聚乙烯對苯二甲酸酯(Polyethylene Terephthalate, PET)塑膠飲料容器至少應使用25%的再生塑膠;而自2030年開始,至少使用30%;另要求歐盟執委會最遲應在2022年1月1日前制定相關行動方案及法令,以計算及核實前述再生塑膠使用目標。 (6) 環保教育義務:課予會員國採取措施以提高消費者認知以下事項之義務:(A)任意棄置一次性塑膠產品及塑膠漁具之環境負面影響(B)一次性塑膠產品及塑膠漁具之回收再利用系統與廢棄管理方案。   本禁令即將完成立法程序,只待歐洲理事會(European Council)正式批准並刊載於公報後,即能成為正式的歐盟指令,成員國嗣後應於2年內將指令中之各項要求轉化成國內法律。

CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效

  Gilead Sciences之子公司Kite Pharma(以下簡稱Kite)所推出之Yescarta®(Axicabtagene Ciloleucel)為治療復發型或難治型瀰漫性大B細胞淋巴瘤(Diffuse Large B-Cell Lymphoma, DLBCL)之CAR-T細胞治療產品,其為美國FDA第二個核准上市之CAR-T產品。   上述產品於2017年獲美國FDA核准上市後,Juno therapeutics公司隨即於美國加州中區聯邦地院起訴Kite,主張Yescarta侵害Juno therapeutics之美國7,446,190號專利「編碼嵌合T細胞受體之核酸(Nucleic acids encoding chimeric T cell receptors)」(以下簡稱190專利),2019年陪審團認定Kite成立專利侵權,裁定損害賠償額為7.78億美元;於2020年法院進一步認定Kite有蓄意侵權行為,再判定需增加50%之損害賠償金,使損害賠償總額超過11億美元。   本案上訴後,美國聯邦巡迴上訴法院(US Court of Appeals for the Federal Circuit, 以下簡稱 CAFC)於2021年8月26日推翻原審判決,認定190專利不符書面說明(Written Description)要件而無效。CAFC認為190專利請求項所請求之單鏈可變區片段抗體(single-chain variable fragment, scFv)結合部涵蓋過廣,包括可結合「任何」標的之「任何」scFv,惟其說明書未能提供其中之代表性物種(species)、或界定其共通結構特徵,於說明書中僅揭露可結合兩種不同標的之兩種scFv作為實施例,但未能說明此二物種如何、或是否能夠代表其所請求的整個上位之屬(genus)。CAFC指出,若要滿足書面說明要件之要求,說明書應揭露與代表性數量之標的結合之特定scFv物種,Juno雖提出專家證詞主張此二scFv實施例已具代表性,惟CAFC仍認為該證詞過於籠統而未能解釋何種scFv將與何種標的結合。CAFC指出,書面說明要件之目的在於確保專利排他權範圍不會超出發明人記載於說明書中之貢獻範圍,190專利發明人證稱其申請發明時只使用過說明書所載之兩個scFv實施例,且說明書未提供確認何種scFv將結合至何種標的之方法與指導,但190專利卻請求可與任何標的結合之scFv,因此,190專利之揭露內容未能證明發明人擁有結合至各種選定標的之所有可能scFvs,無法滿足書面說明要件之要求。   醫藥專利以上位請求項(genus claim)尋求保護時,可能因說明書記載內容不容易滿足書面說明與可據以實施(Enablement)要件而受到挑戰。除本案外,美國近期亦有數件醫藥專利因不符書面說明要件與可據以實施要件而被宣告無效,如Amgen Inc. v. Sanofi(Fed. Cir. 2021)、Idenix Pharmaceuticals LLC v. Gilead Sciences Inc.(Fed. Cir. 2019)、Enzo v. Roche(Fed. Cir. 2019),未來醫藥專利以上位請求項尋求保護是否會變得更加困難,值得繼續觀察。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP