歐洲汽車供應商協會(European Association of Automotive Suppliers,俗以CLEPA簡稱之)於2023年3月7日發表〈關於標準必要專利之政策指南—一個可因應汽車產業數位轉型現象的歐盟專利規則〉(Standard Essential Patents Policy guidelines—For an EU patent regulation that adapts to the digital transformation in the mobility ecosystem),以期有關單位能給予汽車產業更明確的指示,舉凡:SEP專利權人可向何人為授權、「合於FRAND原則之授權條款」應如何被認定等。
CLEPA提及,由於在一技術領域中有SEP時,其他的技術無「迴避設計」(design-around)可能性,而必得實施該被選為標準之技術,故在該技術領域中,無其他技術可與「受該SEP保護」的技術相抗衡;是以該SEP的價值必須被審慎且精確評估。此外,CLEPA指出,由於汽車產業會投資、研發、銷售有助於未來「移動性」(mobility)發展的下世代產品,故此產業與智慧財產權議題有高關聯性(例如:此產業每年會申請超過39,000筆專利權),應予其在SEP議題上有足夠的明確性(certainty)及可預測性(predictability),使其在「投資於廣泛實施標準的『新技術』」上,更可依循。而創建一個「利益平衡」(balanced)的環境,將有助於授權雙方進行合於「誠信原則」(good-faith)的授權協議。
CLEPA為以上目的,提出五點建議:
(1)應有一「歐盟層級」的立法
一個「歐盟層級」(EU-level)的法架構體系是較足以為SEP專利權人及專利實施者間,提供較「利益平衡」的環境,且較可抑制不公平的SEP授權行為。
(2)「供應鏈中任一層級,均可得授權原則」
凡任何欲得授權者,不論其位於供應鏈中何層級,均應予其有「在符合FRAND原則」下,被授權的機會。又,由於一技術之所以會成為「標準」,係因被「商討」(coordination)而出,倒不一定是因其在市場競爭上,真的有大勝於其他技術的優勢,故授權權利金應僅可反映該技術本身的價值,而不可將「因標準化而可帶來的其他廣大利益」摻入。
(3)對於SEP授權條款應有明確指示
政策制定者及各「標準制定組織」(Standard Setting Organization, SSO)應對「何謂合於FRAND原則之授權條款」提供指南;此外,也應提出就一SEP及其有被納入的「專利組合」(portfolios)的評價方法。
(4)供應鏈中的授權狀況應明瞭
專利實施者應清楚明瞭其是否應獲授權,或其上游元組件供應商是否已獲授權。
(5)應有完整的法體制
政策制定者應制定法體制或應提供關於法體制的指南,以避免SEP專利權人不當申請「禁制令」(injunction),以強使授權協議之可被達成。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2022年1月27日宣布批准Meta(原Facebook)對Kustomer的併購案。Kustomer公司本身為向企業銷售客戶關係管理(customer relation management, CRM)整合軟體之公司,故本項併購可能影響Meta對消費者資訊的掌握能力,進而提升廣告市場影響力。因之,歐盟執委會基於自去(2021)年8月起深入調查本併購案有無影響公平競爭的結果,作成批准本併購案之決定,但要求Meta應遵守其提出的條件。 依據歐盟執委會的調查結果,主要擔憂本併購案可能阻礙CRM整合軟體之供給市場、以及CRM整合軟體售後客戶服務之供給市場的公平競爭。同時,調查中亦確認到Meta限制Kustomer公司的潛在競爭對手、以及新參與上述市場的業者近用Meta的訊息傳遞路徑應用程式介面(message channel API)。上述潛在競爭對手與業者和Kustomer公司相同,以中小企業為其主要銷售客群。而Meta採取此種經營方式,則可能會劇烈減少CRM整合軟體供給市場、以及CRM整合軟體售後客戶服務供給市場的競爭,導致相關軟體產品或服務的價格上揚,並伴隨品質與創新能量的下降,更可能將之轉嫁予消費者。 對上述調查結果所提出違反公平競爭秩序的疑慮,Meta則提案追加以下約款,作為條件以圖本併購案能夠獲准:(1)Meta保證於10年內,將其訊息傳遞路徑應用程式介面以無償、非歧視的方式,公開予存在競爭關係之客戶服務CRM整合軟體供應商、與新參與市場的業者取用;(2)Kustomer公司之客戶所使用Messenger、Instagram之私人通訊服務,以及WhatsApp之功能未來有進行改良或更新時,Kustomer公司之競爭對手與新進業者同樣得使用該些更新的功能。歐盟執委會最終認為Meta若踐行上述約款,將能消除其違反公平競爭秩序的疑慮,而以Meta履行該些約款為條件批准本併購案。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。 本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。 第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。