美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作

美國歐盟貿易和技術委員會(Trade and Technology Council,簡稱TTC)第四次部長級會議於2023年5月31日發布聯合聲明。TTC繼續作為美國和歐盟對俄羅斯在烏克蘭戰爭中協調及有效反應的平台,處理包括與制裁相關的出口限制、打擊外國資訊操縱和干擾,以及破壞人權並威脅到當事國及第三國民主制度的運作和社會福祉等議題。

本次TTC聯合聲明之五大議題重點介紹如下:

(1)強化跨大西洋新興技術合作以實現美歐共同領導:包括監控與衡量現有和新出現的人工智慧風險;發展智慧電網下智慧移動標準及互通性(Interoperability);提升半導體供應鏈的合作,包括鼓勵研發、資訊共享;建立工作小組共同處理量子技術問題。

(2)促進貿易及投資的永續性與新機會:乾淨能源補助;避免關鍵礦物供應受地緣政治影響;藉由數位工具提升貿易便捷的合作;相互承認醫藥品製造實務作法等。

(3)貿易、安全和經濟繁榮:出口管制與制裁相關出口限制的合作;交換對於與國安風險有關的特定敏感技術及關鍵設施投資審查的看法;重視對外投資管制,以保護敏感技術不流於對國際和平與安全有疑慮的用途;討論非市場政策與實務、及經濟脅迫(Coercion)的威脅與挑戰。

(4)連結性(Connectivity)和數位基礎設施:加速合作發展6G無線通訊系統;國際連通性與海底電纜計畫。

(5)在不斷變化的地緣政治數位環境中捍衛人權和價值觀:建構具透明性與可問責之線上平台;處理在第三國進行外國資料操縱與干預議題。

TTC將透過各工作小組,持續關注、研究上述議題的發展,並預計於2023年底於美國再次召開會議,檢視合作的成果。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9019&no=64&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟國會通過頗受爭議之「反仿冒貿易協定(ACTA)

  在歷經多次談判會議,由包括美國、歐盟、日本、韓國等11個國家共同參與的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, 簡稱ACTA)」,終於在雪梨展開的最後談判回合(11月30日-12月4日)中獲得共識,並於日前正式對外發布ACTA協定文本內容。   該協定旨在透過跨國境的國際合作,有效打擊日益猖獗的盜版及仿冒問題,全文共計6章45條文,包括民、刑事執行、邊境措施等,且因應數位化時代對智慧財產權保護所帶來的衝擊,針對數位化環境智慧財產權的執行措施,也有相對應的規定(section 5: Enforcement of Intellectual Property Rights in the Digital Environment)。而ACTA協定文本尚須提交各簽約國政府或國會表決同意的程序,方能生效。   以歐盟為例,儘管遭受歐盟境內廣大的批評聲浪,歐盟國會於11月24日以驚險的半數通過爭議許久的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, ACTA) 」。歐盟國會宣稱,透過ACTA協定的簽署,以國際合作的方式,將有助於解決現今猖獗的侵權問題,以落實智慧財產權的保障。尤其是針對歐盟境內的地理標誌(如Champagner、Spreewald-Gurken),未來將可透過跨國合作,提升對歐洲企業的保護。雖然現階段仍有許多問題未能達成共識,但至少ACTA協定啟動各國合作打擊仿冒的開端。   不過,雖然歐盟執委會一直以來對外“消毒“, ACTA協定的簽署前提是在符合歐盟現行法規的基礎上,並且不會對歐盟人民的基本權、個人隱私權保障造成威脅。但包括電子通 訊傳播業者(e-communications providers)、無疆界醫師組織等團體,都發表聲明,要求歐盟國會確保ACTA協定落實於各會員國內,不會影響改變歐盟既有的法制規範。包括是否引進三振條款,透過網路封鎖手段遏止侵權行為、是否以刑事手段制裁侵權人等爭議,勢必在各歐盟會員國提交其國會表決時,將引起極大的討論。

遠距健康照護之法律議題研析

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP