歐盟智慧財產局(EUIPO)於2023年6月底發布了《歐盟營業秘密訴訟趨勢報告》(Trade Secrets Litigation Trends in the EU),本報告包含三大部分,分別為判決之量化分析、法律要件之質化分析、各會員國之重要判決摘要,內容涵蓋了2017年1月1日至2022年10月31日間,27個會員國的695個訴訟案件。其重點摘要如下:
一、案件涉及之類型分析
1、約41%的案件與離職員工有關。
2、約17%的案件與商業合作對象有關。
3、約30%的案件雙方無明確的契約關係(但報告中指出此項統計包含員工離職後自行創業,原告以該離職員工及該公司為被告的情況)。
二、案件涉及之營業秘密標的分析(同一訴訟案件可能包含多個標的)
1、約62%的標的為「商業性營業秘密」。其中配銷通路(distribution methods)、廣告策略、行銷資料、客戶名單等供應鏈「下游資訊」(downstream information)占31%最多;定價模式及會計資料等「財務資訊」占13%次之。
2、約33%的標的為「技術性營業秘密」,其中有19%與「製程」(manufacturing process)有關。
3、僅3%的標的為原型(prototypes)或尚未公開的產品設計。
三、案件涉及之產業別分析(根據「歐盟標準行業分類第二修正版NACE Rev. 2」分類)
整體來說,歐盟營業秘密訴訟案件所涉及的產業別相當多元,簡要說明如下:
1、排名第一的產業別為「製造業」(manufacturing),占32%。其中最常涉訟的子產業別為「機械設備製造業」(manufacture of machinery and equipment)及「化學製品製造業」(manufacture of chemicals and chemical products)。
2、排名第二的產業別為「批發及零售業;汽機車維修業」(wholesale and retail trade;repair of motor vehicles and motorcycles)占11%。
3、排名第三的產業別為「金融及保險業」(financial and insurance activities)及「專業、科學及技術服務業」(professional, scientific and technical activities),分別占7%。
四、被告提出之抗辯分析
報告中指出,原告提出之營業秘密主張被法院採認的比例僅27%,有約73%的案件法院最終是做出有利於被告的認定。而被告最常提出的抗辯,第一為抗辯原告所主張之系爭資訊是普遍共知(generally known),不具備秘密性;第二為抗辯原告未採取合理保密措施。
最後,報告結論分析歐盟營業秘密判決的三大趨勢,其中一項趨勢指出,營業秘密所有人若要強化契約措施(如保密協議)於訴訟中的證明力,應明確識別與界定系爭營業秘密的範圍。因此,企業應建立營業秘密管理的整體政策(譬如與員工簽訂之勞動契約中,應明確界定其保密義務範圍;員工離職時應落實離職面談,再次提醒員工應遵守的保密義務範圍等),以便於發生爭議時有效主張權利。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國為眾多國家中致力發展金融科技的佼佼者,其相關政府部門-英國金融行為監理總署(Financial Conduct Authority, FCA)早於2016年即推出世界首例金融監理沙盒(Financial Regulatory Sandbox)制度,同時也與英格蘭銀行致力發展開放銀行業務、金融創新項目以及監管措施改革等等。也因為英國為金融科技提供了良好的環境以及養分,使目前英國金融科技佔全球市場總額10%,並有71%的英國公民至少接受一間金融科技公司提供服務;2020年金融科技為英國吸引了41億美元的投資,遠超德國、瑞典、法國、瑞士和荷蘭的總和。 為使英國金融科技持續成長,英國財政大臣於2020年要求針對英國金融科技現況及未來發展進行獨立性研究,該研究並於2021年2月公布。根據研究報告指出,英國金融科技正面臨下述三大問題: 其他國家紛紛仿效英國之成功模式,致使英國金融科技不再具有獨占地位。 英國脫離歐盟導致監管措施的不確定性。 新冠肺炎的來襲,迫使各國均快速發展並靈活運用金融科技,導致英國金融科技優勢地位逐漸喪失。 為了解決上述三大問題,研究報告提出了五項建議計畫: 針對政策以及監管方式之持續進步 雖然英國目前仍處於金融科技政策以及監管的領先地位,但隨著業務、科技等發展,必須確保政策以及監管方式繼續保護金融消費者,同時創造鼓勵創新和競爭的環境。因此建議的方案包含:實施新型態監理沙盒(Scalebox);建立一個數位經濟工作小組以確保政府各部門之一致性;確保金融科技成為貿易政策的一部分。 培養人才 英國需要確保金融科技擁有充足的國內和國際人才供應,以及因為預計在2030年,英國有90%勞動者需要學習新技能,因此也需要培訓和提升現有和未來勞動力技能的方案。因此建議的方案包含:辦理針對成年人進行再培訓和提高技能之短期課程;創建一個新的簽證類型,以提高獲得全球人才的機會;為學習金融科技的學生以及創業者建立媒合平台,設置金融科技人才管道。 建立友善的投資環境 英國雖然透過私募基金成功地為英國金融科技事業募資,但英國仍應該持續加強金融科技事業從初創到公開發行的一系列融資過程,尤其是融資的後期階段。因此建議的方案包含:擴大金融科技獎勵措施以及便利金融科技事業籌資(包含:擴大研發稅收抵免額度、企業投資計畫、風險投資信託);英國應該另行增設一個約10億英鎊之基金供金融科技發展使用;放寬英國上市公司限制(例如:雙層股權結構);創設一個全球金融科技指數以擴大金融科技事業知名度。 與國際合作 雖然英國目前取得金融科技的成功和未來數位貿易崛起的機會,但仍應採取更多的措施用以獲得更多國際支持,這將會成為英國在脫離歐盟後針對國際開放性作出的重大表態。因此建議的方案包含:針對金融科技提出國際行動方案;推動設立金融、創新和技術中心,並成立國際金融科技工作小組;推出國際金融科技認證組合。 英國國內整合 金融科技在國家的支持下,英國各地皆分布大量的金融科技人才。為了保持英國作為金融科技中心的地位,英國須注重規模和支持區域專業,尤其是大學正在創造的重要的智慧財產權。因此建議的方案包含:培育十大金融科技重鎮,而每個重鎮均應設置一個以強化金融科技、培養專家以及增加國家競爭力為目的的三年目標;通過金融、創新和技術中心協調國內金融科技發展策略;通過進一步的投資計畫加快金融科技重鎮的發展以及成長。
德國科隆行政法院判決Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象德國科隆行政法院於2015年11月11日判決美商Google公司所提供之Gmail電子郵件服務為德國電信法「電信服務」定義下之規範對象,依據德國電信法第3條24之規定。因此,以該服務之提供者Google公司得依據德國電信法第6條第1項履行其「通報義務」。繼德國聯邦網路局(Bundesnetzagentur)於2012年7月透過正式通知美商Google Inc.需履行德國電信法第6條第1項之「通報義務」。 Google公司指出Gmail不是電信服務,因為Google本身所提供之服務目的不是在於電子信號的傳送。 德國聯邦網路局則指出,因為Google公司的伺服器,以專業術語來說,依據OSI模型(開放式系統互聯通訊參考模型,Open System Interconnection Reference Model, ISO/IEC 7498-1)定義,係有信號傳送服務提供的事實。Google透過獨特的傳送技術傳送數據信號,且針對其所傳輸的有所管控能力。此外,亦應更宏觀的來以電信法立法的宗旨與角度去審視是否此服務應受規範。德國聯邦網路局並不企圖於規範網路世界的一切。但是,像是Gmail或其他OTT服務業者應需要如同傳統電信服務業者般的,重視並履行其資料保護(Datenschutz)、消費者保護(Kundenschutz)、資訊安全(Sicherheit)上的義務。 德國聯邦科隆行政法院判決支持德國聯邦網路局的見解,Google公司因其所提供之Gmail服務應履行德國電信法之通報義務。在定義上是否電信服務,並不是完全以技術面去做認知,更為重要的在於電信法的立法價值初衷。德國聯邦科隆法院已准許透過飛躍上訴(Sprungrevision)的方式將該案送於德國聯邦最高行政法院(Bundesverwaltungsgericht),此案將可能有最高行政法院的判決。若Gmail被認定為係屬「電信服務」,此判決將會針對全德國的OTT服務規範有所影響,需被德國聯邦網路局所監管。
生物識別技術走進零售業近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。 目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。 不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」