英國商業及貿易部(Department for Business and Trade)於2023年4月25日向下議院提交《數位市場、競爭和消費者法案》(Digital Markets, Competition and Consumers Bill,以下稱DMCC法案),該法案提議對既有的企業競爭與消費者權益規範進行調整,以促進數位市場之競爭及創新。DMCC法案正在下議院進行二讀中,法案架構參考澳洲與歐盟相關制度規範,期望能藉政府干預而調解大型網路平台分別與小型媒體、消費者間議價能力失衡及資訊不對稱問題。
DMCC法案將授權英國競爭暨市場管理署(Competition and Markets Authority)及其轄下數位市場部(Digital Markets Unit)監管與確保數位市場之開放性,並強化消費者權益的保護。法案主要分為三部分:
一、更新數位市場制度:數位市場部將依據企業的商業模式、全球或英國營業總額與市場影響力等面向,判斷該企業是否具策略市場地位(Strategic Market Status,以下稱SMS),並為SMS企業設定行為準則,避免其策略或活動影響市場自由。
二、公平競爭:DMCC法案調整《競爭法》(Competition Act 1998)涵蓋範圍,自地域管轄擴張為對英國貿易產生直接、實質與可預見影響的境內、外行為;同時加強競爭暨市場管理署調查反競爭行為與執法權限,包含扣押文件及證據、面談案件任何關係人。
三、強化消費者保護:DMCC法案將替代部分《保護消費者免受不公平交易條例》(Consumer Protection from Unfair Trading Regulations 2008),且針對線上交易提供新的契約規則,賦予競爭暨市場管理署調查侵權行為之權力。
DMCC法案正在下議院審查中,但草案內容已引起各方關注,正式通過前仍可能因社會各方利益團體之遊說、磋商而修改條文內容。
為了改善下一世代的健康,資料來源係來自於半數英國人口的英國人類基因資料庫於今年三月底正式開放給所有研究者使用。該資料庫資訊包含二萬六千筆糖尿病患者、五萬筆關節疾病患者、四萬一千筆不飲酒者,以及一萬一千筆心臟病患者的健康資訊。 英國人體基因資料庫係利用四年的時間招募來自蘇格蘭、英格蘭與威爾斯地區,年紀介於四十到六十九歲的自願捐贈者,就其採集檢體、身高、體重、體脂肪、手握力、骨頭密度、心肺功能、血壓、醫療病例、生活習慣、記憶、飲食、生理與心理情狀、聽力與視力等資訊所集結的健康資料庫,其可堪稱是世界上積累大規模人類健康資訊的來源之一。 欲使用英國人體基因資料庫的申請者,不論其係來自英國或是海外,亦不論申請者係來自學界、產業界、公益團體,或是由政府資助的研究機關(機構)、團體或個人,在本於欲從事的研究係基於健康相關與確保公眾利益的前提之下,均可向該資料庫的管理單位提出使用申請。該申請必須於網路上提出,且欲申請使用之研究必須受到英國人類基因資料庫小組的嚴謹審查,且該審查過程亦會受到英國人體基因資料庫委員會轄下的 Access Sub-Committee所監督。除此之外,具有獨立超然特徵的英國人類基因資料庫倫理與管理會議(UK Biobank Ethics and Governance Council)亦將會監督整個審查系統的運作和流程。 英國人類基因資料庫將允許研究者,在基於保障公眾利益的前提下所進行的健康相關研究,來使用該資料庫內的所有資源。該資料庫期許研究者能夠發現特殊疾病發生於人類個體上的差異性,以進而研發出一套新的治療與防範措施。除此之外,該資料庫的資源利用亦期待研究者能在具有慢性、疼痛與生命威脅性特徵的疾病上,例如癌症、心臟疾病、中風、糖尿病、老人痴呆、憂鬱症、關節炎、眼睛、骨頭和肌肉等疾病,能夠就其發生原因、預防方法與治療方式找出新的診斷和解決方法。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008)美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。 「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。 在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。