歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。

時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下:

1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。

2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。

3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。

4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。

5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。

EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

相關連結
你可能會想參加
※ 歐盟個資保護委員會公布GDPR裁罰金額計算指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9024&no=67&tp=1 (最後瀏覽日:2025/10/03)
引註此篇文章
你可能還會想看
歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

英國發佈具有決定性的基因體醫藥報告

  正當英國衛生部門(Department of Heath)計畫建構一個受命與提供資金的機構來進行癌症分子研究時,一個著重於基因藥物使用的英國政府諮詢組織-人類基因體策略團體(Human Genomics Strategy Group)提出報告要求英國健康照護服務(National Health Service, NHS)以多面向的方式來開發潛在性基因體科技。   人類基因體策略團體所提供的報告建置出了英國就基因體藥物於臨床應用可行性的相關步驟,該等步驟可提昇英國臨床醫師決定疾病的風險與傾向、從事正確的診斷與預知,以及培養個人醫療的能力。除此之外,該報告亦開展了人類基因體於臨床與診斷照護上的創新應用,並且提供英國政府關於基因資料之處理、公共健康議題與教育等措施資訊,以用來支持基因體科技的應用。   該報告建議,有鑑於英國已擁有強健的研究文化與資源,現階段英國已經準備好基因體藥物研究的初期階段。然而,在開始基因體藥物的研究之前,英國政府應該先在基因體技術廣泛使用於臨床照護與診斷的面向上作出更多的努力,其中包括建制出一套對於基因體與臨床基因檢驗的清楚標準,用以發展出一般性的程序來幫助健康照護專業人員來取得檢驗並分析結果。除此之外,為了防止前述一般性程序產生各項倫理道德性爭議,該報告亦建議英國政府應該發展出一套法制規範來處理關於基因藥物是否具有利用性的挑戰議題,並且以該規範來防範各種基因體資料可能被濫用的問題。   而除了建置基因體計畫法制面的規範,為了讓基因體技術能更廣泛的應用於臨床照護與診斷的範疇,此報告亦建議英國NHS應該規劃採用基因體科技的計畫、發展中央基因體儲存網絡來處理大量由基因體藥物所產生的生物資訊,以及開展出針對基因體科技所發展的受命計畫和服務傳遞模型。同時,考量英國國民與健康照護人員對於促進基因體藥物亦有所幫助,該報告也建議英國NHS應該持續提供相關教育與訓練課程來提高前述人員對於基因體藥物的認知與其帶來的益處。   有鑑於基因體醫藥報告對於英國未來從事基因實驗、臨床研究與基因藥物的研發具有決定性的影響,然該報告僅建構出具體的大方向,對於細節部分尚未有大量的著墨。因此,英國官方部門如何將此份報告於法制面和技術面加以具體落實,實值得繼續就相關內容作後續的追蹤。

印度廣告標準委員會公布「虛擬數位資產和連結服務廣告指引」

  印度廣告標準委員會(Advertising Standards Council of India, ASCI)於2022年2月23日發布「虛擬數位資產及連結服務廣告指引」(Guidelines for Advertising of Virtual Digital Assets and Linked Services),旨在防止使用加密資產和相關服務用戶所面臨的風險。   本指引使用「虛擬數位資產」(Virtual Digital Assets, VDA)此專有名詞,而非「加密資產」,並將虛擬數位資產定義為透過加密或其他方法所產生的任何訊息、編碼或代幣,得以充當計價或記帳單位的憑證或儲存,包括加密貨幣和其他相關產品,例如非同質化代幣(NFTs)均屬之。   該指引目的在將虛擬數位資產廣告與印度廣告標準委員會所發布的準則保持一致,該準則要求廣告必須真實,不得因「模糊、誇大或遺漏」而誤導消費者,並且不得利用消費者之信任或欠缺了解。   最重要的是,廣告商必須在所有虛擬數位資產的廣告中,於明顯位置附上免責聲明,且免責聲明必須至少佔總印刷或靜態廣告空間的20%,而動態廣告至少要有5秒,並且必須出現在聲音和社群媒體廣告中。免責聲明中應載明:「加密資產和非同質化代幣並不受監管,風險高。此類交易造成的任何損失可能因為沒有監理,而難以取得賠償。」

IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。   近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。   傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。   此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。   其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

TOP