歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。

時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下:

1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。

2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。

3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。

4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。

5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。

EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

相關連結
你可能會想參加
※ 歐盟個資保護委員會公布GDPR裁罰金額計算指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9024&no=67&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
「亞馬遜公司(amazon)」積極向美國政府機關推動其所開發的人臉辨識軟體“Rekognition”,將可能造成隱私權的重大侵害

  亞馬遜公司所開發的“Rekognition”軟體可以進行照片中的人臉辨識識別,單張圖片中可辨識高達一百人,同時可以圖片進行分析及比對資料庫中的人臉長相。目前亞馬遜公司積極向政府機關推銷這套軟體。可能造成的風險是,公權力機構可透過使用“Rekognition”軟體來辨識或追蹤任何個人,警察機關可以隨時監控人民的行為,各城市的政府機關也可能在無合理理由的狀況下隨時查看人口居住狀況,尤有甚者,美國移民及海關執法局(Immigration and Customs Enforcement, ICE)可以使用該軟體來監控移民的狀況,即使是無任何犯罪疑慮的狀況下亦可進行,將政府打造成巨大的監控系統,有造成隱私權嚴重侵害的疑慮。因此無論亞馬遜公司內外都有反對將“Rekognition”軟體推銷給政府機構的聲浪,尤其美國公民自由聯盟(American Civil Liberties Union, ACLU)更是發起多項連署抗議。   支持政府使用“Rekognition”軟體的意見則認為,使用“Rekognition”軟體將可以更有效率地辨識人臉,在尋找失蹤兒童或在公共中辨識出恐怖份子可以發揮更大的作用,不啻是保護公眾法益的進步。   佛羅里達的奧蘭多市警察機構曾經使用“Rekognition”軟體後因契約到期而一度停止使用,於7月9日與亞馬遜公司續約繼續測試使用該軟體,奧蘭多市警察機構宣稱以目前測試階段將不會使用一般民眾的照片進行測試,將不會造成人民的隱私權侵害。

英國政府許可利他的研究用途卵子捐贈

  主管英國生殖醫療及胚胎研究事務的人工授精暨胚胎管理局(The Human Fertilisation and Embryology Authority, HFEA)在考量過包括對捐贈婦女的風險以及公眾意見的諮詢後,於今(2007)年2月21日正式對外宣佈一項關於研究用途卵子捐贈的方案,當中提出有力的安全措施確保婦女在捐贈過程中會被正確的告知其風險,並強制地獲得適當的保障。管理局許可婦女捐贈其卵子以供研究之用,包括利他的卵子捐贈,以及接受試管受精醫療後所剩餘的卵子捐贈,而這是英國政府首度許可非接受生殖醫療的婦女可以為提供研究之用進行卵子捐贈。   HEFA強調研究用途卵子捐贈在程序上將有更明確的安全措施。這些安全措施包括清楚的區分研究人員及施行該婦女醫療的人員、關於實際上研究後果的詳細資訊、捐贈將產生的影響,以及要求獲得捐贈婦女在不受研究團隊干擾下的同意。這些安全措施將可有效避免女性捐贈者在被脅迫、被詐欺或是被誤導下做出捐贈卵子的決定。同時,婦女亦不能藉由捐贈卵子而獲得報酬,捐贈者只能要求一筆因捐贈所實際產生費用的補償(250英鎊,約16000元新台幣)。   雖然HEFA認為研究用途捐贈卵子的婦女將得到管制部門嚴密而強力的保障,並且不預見在這個特殊的研究領域會有魯莽的應用,但是部分專家對此並不贊同。位於英國倫敦的國王學院幹細胞研究學者Stephen Minger博士即認為目前使用人類卵子進行的研究工作仍未成熟,這項過早提出的方案會鼓勵婦女去提供她們的卵子來進行研究,而鼓勵這種情況的發生仍是太早了。

歐盟資料保護工作小組修正通過GDPR個人資料當事人同意指引

  因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或譯為一般資料保護規則,下簡稱GDPR)執法之需,針對個人資料合法處理要件之一當事人「同意」,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年4月10日修正通過「當事人同意指引」(Guidelines on consent under Regulation 2016/679),其中就有效同意之要件、具體明確性、告知、獲得明確同意,獲有效同意之附加條件、同意與GDPR第6條所定其他法定要件之競合、兒少等其他GDPR特別關切領域,以及依據指令(95/46/EC)所取得之當事人同意等,均設有詳盡說明與事例。   GDPR第4條第11項規定個人資料當事人之同意須自由為之、明確、被告知,及透過聲明或明確贊成之行為,就與其個人資料蒐集、處理或利用有關之事項清楚地表明其意願(unambiguous indication)並表示同意。殊值注意的是,如果控制者選擇依據當事人同意為任何部分處理之合法要件,須充分慎重為之,並在當事人撤回其同意時,即停止該部分之處理。如表明將依據當事人同意進行資料之處理,但實質上卻附麗於其他法律依據,對當事人而言即顯係重大不公平。   換言之,控制者一旦選擇當事人同意為合法處理要件,即不能捨同意而就其他合法處理的基礎。例如,在當事人同意之有效性產生瑕疵時,亦不允許溯及援引「利用合法利益」(utilise the legitimate interest)為處理之正當化基礎。蓋控制者在蒐集個人資料之時,即應揭露其所依據之法定要件,故必須在蒐集前即決定其據以蒐集之合法要件為何。

解析雲端運算有關認驗證機制與資安標準發展

解析雲端運算有關認驗證機制與資安標準發展 科技法律研究所 2013年12月04日 壹、前言   2013上半年度報載「新北市成為全球首個雲端安全認證之政府機構」[1],新北市政府獲得國際組織雲端安全聯盟( Cloud Security Alliance, CSA )評定為全球第一個通過「雲端安全開放式認證架構」之政府機構,獲頒「2013雲端安全耀星獎」(2013 Cloud Security STAR Award),該獎項一向是頒發給在雲端運用與安全上具有重要貢獻及示範作用之國際企業,今年度除了頒發給旗下擁有年營業額高達1200億台幣「淘寶網」的阿里巴巴集團外,首度將獎項頒發給政府組織。究竟何謂雲端認證,其背景、精神與機制運作為何?本文以雲端運算相關資訊安全標準的推動為主題,並介紹幾個具有指標性的驗證機制,以使讀者能瞭解雲端運算環境中的資安議題及相關機制的運作。   資訊安全向來是雲端運算服務中最重要的議題之一,各國推展雲端運算產業之際,會以提出指引或指導原則方式作為參考基準,讓產業有相關的資訊安全依循標準。另一方面,相關的產業團體也會進行促成資訊安全標準形成的活動,直至資訊安全相關作法或基準的討論成熟之後,則可能研提至國際組織討論制定相關標準。 貳、雲端運算資訊安全之控制依循   雲端運算的資訊安全風險,可從政策與組織、技術與法律層面來觀察[2],涉及層面相當廣泛,包括雲端使用者實質控制能力的弱化、雲端服務資訊格式與平台未互通所導致的閉鎖效應(Lock-in)、以及雲端服務提供者內部控管不善…等,都是可能發生的實質資安問題 。   在雲端運算產業甫推動之初,各先進國以提出指引的方式,作為產業輔導的基礎,並強化使用者對雲端運算的基本認知,並以「分析雲端運算特色及特有風險」及「尋求適於雲端運算的資訊安全標準」為重心。 一、ENISA「資訊安全確保架構」[3]   歐盟網路與資訊安全機關(European Network and Information Security Agency, ENISA)於2009年提出「資訊安全確保架構」,以ISO 27001/2與BS25999標準、及最佳實務運作原則為參考基準,參考之依據主要是與雲端運算服務提供者及受委託第三方(Third party outsourcers)有關之控制項。其後也會再參考其他的標準如SP800-53,試圖提出更完善的資訊安全確保架構。   值得注意的是,其對於雲端服務提供者與使用者之間的法律上的責任分配(Division of Liability)有詳細說明:在資訊內容合法性部分,尤其是在資訊內容有無取得合法授權,應由載入或輸入資訊的使用者全權負責;而雲端服務提供者得依法律規定主張責任免除。而當法律課與保護特定資訊的義務時,例如個人資料保護相關規範,基本上應由使用者與服務提供者分別對其可得控制部分,進行適當的謹慎性調查(Due Diligence, DD)[4]。   雲端環境中服務提供者與使用者雙方得以實質掌握的資訊層,則決定了各自應負責的範圍與界限。   在IaaS(Infrastructure as a Service)模式中,就雲端環境中服務提供者與使用者雙方應負責之項目,服務提供者無從知悉在使用者虛擬實體(Virtual Instance)中運作的應用程式(Application)。應用程式、平台及在服務提供者基礎架構上的虛擬伺服器,概由使用者所完全主控,因此使用者必須負責保護所佈署的應用程式之安全性。實務上的情形則多由服務提供者協助或指導關於資訊安全保護的方式與步驟[5]。   在PaaS(Platform as a Service)模式中,通常由雲端服務提供者負責平台軟體層(Platform Software Stack)的資訊安全,相對而言,便使得使用者難以知悉其所採行的資訊安全措施。   在SaaS(Software as a Service)模式中,雲端服務提供者所能掌控的資訊層已包含至提供予使用者所使用的應用程式(Entire Suite of Application),因此該等應用程式之資訊安全通常由服務提供者所負責。此時,使用者應瞭解服務提供者提供哪些管理控制功能、存取權限,且該存取權限控制有無客製化的選項。 二、CSA「雲端資訊安全控制架構」[6]   CSA於2010年提出「雲端資訊安全控制架構」(Cloud Controls Matrix, CCM),目的在於指導服務提供者關於資訊安全的基礎原則、同時讓使用者可以有評估服務提供者整體資訊安全風險的依循。此「雲端資訊安全控制架構」,係依循CSA另一份指引「雲端運算關鍵領域指引第二版」[7]中的十三個領域(Domain)而來,著重於雲端運算架構本身、雲端環境中之治理、雲端環境中之操作。另外CCM亦將其控制項與其他與特定產業相關的資訊安全要求加以對照,例如COBIT與PCI DSS等資訊安全標準[8]。在雲端運算之國際標準尚未正式出爐之前,CSA提出的CCM,十分完整而具備豐富的參考價值。   舉例而言,資訊治理(Data Governance)控制目標中,就資訊之委託關係(Stewardship),即要求應由雲端服務提供者來確認其委託的責任與形式。在回復力(Resiliency)控制目標中,要求服務提供者與使用者雙方皆應備置管理計畫(Management Program),應有與業務繼續性與災害復原相關的政策、方法與流程,以將損害發生所造成的危害控制在可接受的範圍內,且回復力管理計畫亦應使相關的組織知悉,以使能在事故發生時即時因應。 三、日本經產省「運用雲端服務之資訊安全管理指導原則」[9]   日本經濟產業省於2011年提出「運用雲端服務之資訊安全管理指導原則」,此指導原則之目的是期待藉由資訊安全管理以及資訊安全監督,來強化服務提供者與使用者間的信賴關係。本指導原則的適用範圍,主要是針對機關、組織內部核心資訊資產而委託由外部雲端服務提供者進行處理或管理之情形,其資訊安全的管理議題;其指導原則之依據是以JISQ27002(日本的國家標準)作為基礎,再就雲端運算的特性設想出最理想的資訊環境、責任配置等。   舉例而言,在JISQ27002中關於資訊備份(Backup)之規定,為資訊以及軟體(Software)應遵循ㄧ定的備份方針,並能定期取得與進行演練;意即備份之目的在於讓重要的資料與軟體,能在災害或設備故障發生之後確實復原,因此應有適當可資備份之設施,並應考量將備份措施與程度的明確化、備份範圍與頻率能符合組織對於業務繼續性的需求、且對於儲存備份資料之儲存媒體亦應有妥善的管理措施、並應定期實施演練以確認復原程序之有效與效率。對照於雲端運算環境,使用者應主動確認雲端環境中所處理之資訊、軟體或軟體設定其備份的必要性;而雲端服務提供者亦應提供使用者關於備份方法的相關訊息[10]。 参、針對雲端運算之認證與登錄機制 一、CSA雲端安全知識認證   CSA所推出的「雲端安全知識認證」(Certificate of Cloud Security Knowledge, CCSK),是全球第一張雲端安全知識認證,用以表示通過測驗的人員對於雲端運算具備特定領域的知識,並不代表該人員通過專業資格驗證(Accreditation);此認證不能用來代替其他與資訊安全稽核或治理領域的相關認證[11]。CSA與歐盟ENISA合作進行此認證機制的發展,因此認證主要的測試內容是依據CSA的「CSA雲端運算關鍵領域指引2.1版(英文版)」與ENISA「雲端運算優勢、風險與資訊安全建議」這兩份文件。此兩份文件採用較為概略的觀念指導方式,供讀者得以認知如何評估雲端運算可能產生的資訊安全風險,並採取可能的因應措施。 二、CSA雲端安全登錄機制   由CSA所推出的「雲端安全登錄」機制(CSA Security, Trust & Assurance Registry, STAR),設置一開放網站平台,採取鼓勵雲端服務提供者自主自願登錄的方式,就其提供雲端服務之資訊安全措施進行自我評估(Self Assessment),並宣示已遵循CSA的最佳實務(Best Practices);登錄的雲端服務提供者可透過下述兩種方式提出報告,以表示其遵循狀態。   (一)認知評價計畫(Consensus Assessments Initiative)[12]:此計畫以產業實務可接受的方式模擬使用者可能之提問,再由服務提供者針對這些模擬提問來回答(提問內容在IaaS、PaaS與SaaS服務模式中有所不同),藉此,由服務提供者完整揭示使用者所關心的資訊安全議題。   (二)雲端資訊安全控制架構(CCM):由服務提供者依循CCM的資訊安全控制項目及其指導,實踐相關的政策、措施或程序,再揭示其遵循報告。   資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。   另一方面,使用者也可以到此平台審閱服務提供者的資訊安全措施,促進使用者實施謹慎性調查(Due Diligence)的便利性並累積較好的採購經驗。 三、日本-安全・信頼性資訊開示認定制度   由日本一般財團法人多媒體振興協會(一般財団法人マルチメディア振興センター)所建置的資訊公開驗證制度[13](安全・信頼性に係る情報開示認定制度),提出一套有關服務提供者從事雲端服務應公開之資訊的標準,要求有意申請驗證的業者需依標準揭示特定項目資訊,並由認證機關審查其揭示資訊真偽與否,若審查結果通過,將發予「證書」與「驗證標章」。   此機制始於2008年,主要針對ASP與SaaS業者,至2012年8月已擴大實施至IaaS業者、PaaS業者與資料中心業者。 肆、雲端運算資訊安全國際標準之形成   現國際標準化組織(International Organization for Standardization, ISO)目前正研擬有關雲端運算領域的資訊安全標準。ISO/IEC 27017(草案)[14]係針對雲端運算之資訊安全要素的指導規範,而ISO/IEC 27018(草案)[15]則特別針對雲端運算的隱私議題,尤其是個人資料保護;兩者皆根基於ISO/IEC 27002的標準之上,再依據雲端運算的特色加入相應的控制目標(Control Objectives)。 [1]http://www.ntpc.gov.tw/web/News?command=showDetail&postId=277657 (最後瀏覽日:2013/11/20) [2]European Network and Information Security Agency [ENISA], Cloud Computing: Benefits, Risks and Recommendations for Information Security 53-59 (2009). [3]ENISA, Cloud Computing-Information Assurance Framework (2009), available at http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework . [4]ENISA, Cloud Computing-Information Assurance Framework 7-8 (2009). [5]ENISA, Cloud Computing-Information Assurance Framework 10 (2009). [6]CSA, Cloud Controls Matrix (2011), https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [7]CSA, CSA Guidance For Critical Areas of Focus in Cloud Computing v2 (2009), available at https://cloudsecurityalliance.org/research/security-guidance/#_v2. (last visited Nov. 20, 2013). [8]https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [9]日本経済産業省,クラウドサービスの利用のための情報セキュリティマネジメントガイドライン(2011),http://www.meti.go.jp/press/2011/04/20110401001/20110401001.html,(最後瀏覽日:2013/11/20)。 [10]日本経済産業省,〈クラウドサービスの利用のための情報セキュリティマネジメントガイドライン〉,頁36(2011)年。 [11]https://cloudsecurityalliance.org/education/ccsk/faq/(最後瀏覽日:2013/11/20)。 [12]https://cloudsecurityalliance.org/research/cai/ (最後瀏覽日:2013/11/20)。 [13]http://www.fmmc.or.jp/asp-nintei/index.html (最後瀏覽日:2013/11/20)。 [14]Information technology - Security techniques- Security in cloud computing (DRAFT), http://www.iso27001security.com/html/27017.html (last visited Nov. 20, 2013). [15]ISO/IEC 27018- Information technology -Security techniques -Code of practice for data protection, controls for public cloud computing services (DRAFT), http://www.iso27001security.com/html/27018.html (last visited Nov. 20, 2013).

TOP