從知名社群網路服務平台Twitter商標的更名看「品牌商標管理」

2023年7月知名社群網路服務平台Twitter基於品牌多角化經營考量(意圖進軍線上金融服務領域),Twitter執行長伊隆·馬斯克(Elon Musk)突然宣布全面變更品牌商標,經典「藍色小鳥」的商標標識改為黑白配色的「X」圖案(以下將該案例稱為「Twitter案」)。

實務上,企業可能於多種情況進行品牌商標之變更,例如:諾基亞(Nokia)因為希望向消費者表明其從手機公司轉型為商業科技公司的決心,故更換新商標,可見Twitter案的更名在科技業並不少見。重點在於品牌商標更名後,可能在商標法方面產生的風險。商標為指示品牌商品與服務來源的重要識別標識,在Twitter案中使用單一英文字母「X」作為新商標,在商標法上,一般被認為識別性較低,較難取得商標權,且其保護範圍可能也因此限縮於設計過的「黑白X標識」;其次,X作為一個常用的英文單字,較易產生與他人商標近似之風險,例如:微軟(Microsoft)公司2003年註冊與其遊戲系統Xbox通訊有關的X商標,或Meta公司自2019年起擁有藍白色彩的X字母商標,且註冊商標指定範圍也是社群媒體、軟體等。

為降低前述品牌商標爭議問題,建議企業由品牌標識設計、品牌全球拓展、品牌行銷宣傳三大階段,分別留意以下事項:

一、品牌標識設計階段:設計全新品牌標識或優化既有品牌標識前,事先評估品牌標識在商標法上是否具有識別性、是否與他人商標近似造成消費者混淆誤認等法定無法取得商標等風險,再決定是否維持原設計理念投入設計。如:Twitter案新商標X,除了透過品牌標識設計增加法律上的識別性,同時降低可能的侵權風險。
二、品牌全球拓展階段:如果預見可能侵權風險,則應加強爭議處理機制的建置,以利爭議發生時,及時採取因應措施。
三、品牌行銷宣傳階段:運用行銷手段加強品牌商標的「後天識別性」,如:透過投放廣告加強在消費者心中「黑白X標識」與品牌的連結等。

有關Twitter Inc.(現已併入X Corp.)的X品牌商標保護與布局策略,將會是後續值得關注的議題。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 從知名社群網路服務平台Twitter商標的更名看「品牌商標管理」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9033&no=64&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
美國國家健康研究院提出幹細胞研究指導方針草案

  美國新任總統歐巴馬上台後,終結小布希政府多年來的人類幹細胞研究補助禁令,於今(2009)年3月9日發佈了13505號執行命令(Executive Order)。此執行命令不僅擴大了可接受政府補助之人類幹細胞研究範圍,亦要求美國國家健康研究院(National Institutes of Health, NIH)檢視現存相關指導方針,並於120天內發佈新的規範。因此,NIH隨後於4月23日提出了幹細胞研究指導方針草案。   草案除將持續補助使用成體幹細胞及誘導多能幹細胞之研究外,針對過往無法接受補助之幹細胞類型(即原本為生殖目的之體外受精卵所衍生之幹細胞)也解除了禁令,使得美國科學家可取得更多樣及不受汙染的人類幹細胞。另外,草案也就幹細胞取得之告知後同意條約與流程做詳細的說明。最後,源自於體細胞核移轉(somatic cell nuclear transfer)、單性生殖(parthenogenesis)或為研究目的於體外所製造之胚胎等範疇之幹細胞,將無法接受草案的補助。   雖然草案大幅開放可受補助之範圍,但仍有些使用合乎規定之幹細胞之研究無法接受到補助,故對利害關係人來說,還是要注意草案所規定之限制條件。目前草案仍處於公眾評論之階段,預計不久之後將可正式生效。

18F與加州政府共同打造採購新流程

  美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。   18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。   近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。   首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。   面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。

美國聯邦地方法院加州北區法院禁止REALNETWORKS公司販賣Real DVD

  美國聯邦地方法院加州北區法院於2009年8月11日判決禁止REALNetworks公司致力或便利於製造、進口、供公眾使用、為販賣之要約或販賣以存取、複製及再散佈等他法規避CSS之保護或受著作權保護之DVD內容之軟體產品,這些產品如已知的RealDVD,或Vegas、Facet或其他名稱之產品,或有近似功能的軟體或其他產品、服務或裝置、設備或其零件。理由在於RealDVD軟體違反了數位千禧年著作權法案(Digital Millennium Copyright Act of 1998,DMCA)禁止規避電腦加密技術之規定。DVD若被CSS(Content Scramble System)鎖碼,則DVD播放者必須取得授權方能播放此光碟片,這些防止技術就是為了避免被複製而設計的。因為RealDVD是一種從含有著作權的DVD製造了一個永久的複製品的軟體技術,而這無法置外於數位千禧年著作權法案所賦予的義務,即使從個人合理使用的條文詮釋,亦無法認為是合法的。   這件案子是美國迪士尼、Sony、派拉蒙、二十世紀福斯、NBC、華納兄弟、哥倫比亞等好萊塢主要電影公司以及DVD複製控制協會(DVD copy control Association,DVD CCA) 於2008年對於REALNetworks公司銷售RealDVD軟體之行為提起訴訟,指控其行為違法法令。   而兩日後(2009年8月13日),於DVD複製控制協會(DVD CCA)訴KALEIDESCAPE公司上訴案中,加州聯邦上訴法院又判決KALEIDESCAPE公司販售DVD複製軟體(Kaleidescape system)違反數位千禧年著作權法案。   此兩個判決對於好萊塢電影工業無疑是一大勝利,但對於DVD複製軟體的科技發展卻是一項打擊。另外在判決中法官也強調這樣的判決決定,仍然保留了個人合理使用的合法空間。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP