美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。

該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。

當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。

針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。

其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。

最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

相關連結
※ 美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9036&no=55&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
美國聯邦通訊傳播委員會決議將進行網路中立立法

  美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )在2009年10月22日表決,一致同意開始進行對「網路開放」(Open internet)相關之規範。除了2005年所提出之前四項提議原則外版本外,FCC新提出兩項提議原則,尋求意見,共包含: 1. 確保網路使用人均可選擇網路服務及內容之自由; 2. 保護對合法網路應用和合法服務使用之權利; 3. 選擇於網際網路上使用設施(devices)之自由; 4. 網路提供業者(network providers)、應用提供業者(application providers)、服務業者(service providers)、和內容提供業者(content providers)者間之競爭關係; 5. 網路提供業者之管理措施,不得基於網路流量(traffic)而對之歧視(discriminate),但得基於顧客之利益采取相關管理措施; 6. 寬頻提供業者,需揭露網路管理措施之方案資訊,以及管理措施對使用者所造成之影響。   參議員John McCain 則表示,網路中立(Net neutrality)的原則,將會扼殺創意和傷害就業市場,該議員並提出網路自由法案(Internet Freedom Act of 2009),認為該法案使避免網路受到政府管控,並且允許持續的創新和創造更多高價值之就業機會。維持網路事業的自由,免於沉重的規範,將是對經濟最佳之刺激方式。   同時也有人質疑,FCC並非授權管理網路之機構,且其所訂定之原則,並未具有法規效力,無法強制執行,而FCC制定該原則之意義為何?但FCC則表示,已獲得政策原則執行之授權。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

日本透過「產業財產權人才培養協力事業」支援發展中國家智慧財產人才培養,消除企業於發展中國家進行經濟投資或活動時所面臨的智慧財產權相關妨礙

2024年2月,日本專利廳根據公開招募結果,公布將由一般社團法人發明推進協會執行令和6年度的「產業財產權人才培養協力事業」。 日本自2021年起開始推動「產業財產權人才培養協力事業」,至今年已邁入第4年,且自2024年起預計於南非共和國開設新的專利審查實務課程,以提升南非共和國專利審查官的必要能力。 「產業財產權人才培養協力事業」主要針對日本企業進行海外經濟投資及活動熱門的發展中國家(包含新興國家以及最低度開發國家LDC),提供積極性的人才培養支援,並以強化該國家能安定培養智慧財產相關權利取得與執行的實施人才為目的。在法制整備較為落後的最低度開發國家如柬埔寨,人才培養強化支援的範圍亦包含產業財產權制度的整備。人才培養的對象以智慧財產廳的職員、取締機關的職員以及民間的智慧財產關係業者為重點,透過提升其對於智慧財產權的能力,解決日本企業為在外國取得產業財產權的權利保護需要花費大量時間、日本企業的產業財產權在外國受到侵害的案件逐年增加等問題,以消除日本企業在外國進行經濟投資及活動時的巨大妨礙。 日本專利廳亦針對研修方針下列事項提出建議: 1、消除發展中國家審查延遲的對應方針 於研修中透過增加案例閱讀、資料尋找演習等的講義時間,提升尋找能力及判斷能力;並透過學習日本的IT系統、業務處理過程,提升系統面的支援能力。 2、提升發展中國家審查品質的方針 透過學習日本的基準、判斷手法提升審查、審判的品質;並透過學習日本的管理手法,提升審查品質管理能力。 3、仿冒品對策的對應方針 透過介紹以日本及各國事例為基礎的支援,加深對於仿冒品對策的理解;並透過增加與實施健全執法相關聯的講義時間,加深對於仿冒品對策的一般理解。 4、建構更有效果的研修方法的對應方針 透過設置課程全體的導師制度(mentor),提升研修效果的同時,有效活用「線上」及「實體」連續性的混合研修方法,並透過於實體研修中實施團體討論、在職訓練(OJT)、案件閱讀、模擬裁判(Mock Trial)等,提升實踐能力。 本文後續會持續留意日本「產業財產權人才培養協力事業」的發展,以掌握日本對於發展中國家支援的最新資訊。我國企業如未來預計於發展中國家進行經濟投資或活動時,亦應注意該國智慧財產權之程度,以評估相關風險。 本文同步刊登於TIPS網(https://www.tips.org.tw)

德國聯邦資料保護暨資訊自由官聲明病人資料保護法恐違反GDPR

  德國聯邦資料保護暨資訊自由官(Der Bundesbeauftragte für den Datenschutz und die Informationsfreiheit,BfDI)Ulrich Kelber教授於2020年8月19日指出,2020年7月3日甫由德國議會通過的病人資料保護法(Gesetz zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur; Patientendaten- Schutzgesetz, PDSG),恐違反歐盟一般資料保護規則(GDPR)。   該法規定自2021年起,健康保險業者必須向被保險人(病人),提供電子病歷(ePA)。而自2022年起,病人有權要求醫生將病人相關資料記錄於電子病歷,包括健檢結果、醫學報告或X光片、預防接種卡、孕婦手冊、兒童體檢手冊、牙科保健手冊等,而被保險人更換健康保險業者時,可要求移轉其電子病歷至新的健保公司。另外,2021年起將可透過手機,下載電子處方並至藥局領取處方藥。2022年1月1日起,將全面強制使用電子處方,病人將可透過智慧手機或平板電腦,決定他人對於電子病歷之近用權限。病人若無手機,可至健保公司查看電子病歷。依照規劃,目前電子病歷的使用仍採自願性。病人可決定保存或刪除哪些資料,以及誰可以近用該文件。自2023年起,被保險人可自願提供電子病歷資料作為研究用途,而因上述研究可處理病人資料之醫師、診所和藥劑師等,有義務確保其資料安全。   BfDI於立法過程中多次強調,在導入電子病歷使用時,病人必須可完全控制自己的資料。而該法規範僅提供病人使用部分設備,例如智慧手機或平板電腦,設定其電子病歷之存取權限,此意謂著將有一段空窗期,病人無法決定其電子病歷中各文件之存取權限。而對於電子病歷中,可否僅開放部分資料供瀏覽或存取,亦受到聯邦資料保護暨資訊自由官質疑。另外,對於無法或不想在手機或平板電腦上使用上述功能的人,本法並未進一步規定,亦即2022年起,上述病人為了能夠檢查或接受醫療,必須強迫病人控制其相關資料,但目前顯然尚缺乏相關配套。此外,以資料保護角度而言,目前電子病歷之認證程序有安全疑慮,尤其是未使用電子健康卡的替代驗證程序尚不夠嚴謹,因此命令相關單位應於2021年5月前完成改善。   電子病歷是對醫療保健改善的重要一步,因此相關健康資料保護需要符合GDPR規範水平。電子病歷雖已逐漸受到認可與重視,惟當前病人資料保護法恐無法完全保護病人資料安全。因此,BfDI將透過監管手段,確保健康保險公司不會因提供電子病歷而違反GDPR。

TOP