美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。
該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。
當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。
針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。
其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。
最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。 德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。 有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。 對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。
日本發布美國數位政策現狀報告,呼籲推動AI發展的同時,亦應注重資料安全性日本獨立行政法人情報處理推進機構(下稱IPA)於2025年10月發布美國第二次川普政權數位政策現狀報告(下稱現狀報告),內文聚焦於美國政權輪換後數位政策之變動與解讀,同時提及在推動AI發展的同時,亦應注重其安全性。 日本觀測美國數位政策的現狀報告指出,隨著社會數位化程度日益增加,除了雲端數位資料的累積,以及提升對於AI的依賴程度外,亦會造成釣魚信件難以識別,透過可自動生成程式碼的惡意攻擊型AI進行攻擊行為等AI濫用之風險。 準此,美國為確保AI與資料的安全性,並維持其領域之競爭優勢,於2025年7月23日發布AI行動計畫,並提出三大方針,包括加速AI創新、建構AI基礎設施,以及透過國際性的AI外交與安全保障發揮領導能力。此外,內文亦提及為確保競爭優勢,需要建立作為AI發展基礎的科學資料集,並建置資料中心,同時確保其具備高度安全性,以避免AI使用者輸入AI之資料遭到竄改或外洩。 此外,現狀報告內文提及日本企業Softbank與OnenAI、Oracle等公司共同參與規模達5000億美元的Stargate計畫,並已於德州著手建設AI資料中心,顯示日本在美國的AI基礎建設中扮演重要角色並佔有一席之地。然而,內文亦指出美國數位政策具備不透明性而有潛在風險,須持續留意與關注。 我國企業如欲深耕AI領域,並透過AI進行技術研發,可由建立科學資料集開始著手,以作為訓練AI模型的基礎,以達到運用AI輔助及縮短研發週期、減少研發過程中的試錯成本等效益。此外,為確保安全性,科學資料集建置過程中所需之數位資料,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,建立貫穿數位資料生命週期之資料治理機制。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國際貿易委員會(USITC)指出中國大陸對侵害智財權執法不力成為美國企業嚴重問題美國國際貿易委員會(United States International Trade Commission)最新公布一份報告指出,中國大陸對於侵害智慧財產權(中國大陸稱知識產權)的立法與執法不力,在中國市場降低了美國企業的獲利能力,例如產品被非法與低成本的仿冒。 報告指出,中國大陸因為重大的結構性與體制性障礙,妨礙了對智慧財產權侵害的執法效果,包括地方政府對侵害企業的保護,各政府單位間缺乏協調,執法的資源與人員訓練不足,相關的民刑事法令也缺乏嚇阻效果。 由於中國大陸對智慧財產權侵害的執法不力,助長中國境內廣泛的侵害美國公司的商標、專利、營業秘密等權利,對於許多美國公司,特別是小公司而言,智慧財產權是重要資產,但缺乏在中國境內保護自己智慧財產權的資源。 報告還指出,在2009年所有美國海關扣押貨物的案件中,來自中國大陸佔79%,來自香港佔10%,整體金額達到2.047億美元。中國大陸有24萬家網咖,使用非法軟體。中國大陸的產品與商標仿冒問題仍十分常見,就算是支付權利金,與其他國家比較,中國大陸所支付的智慧財產權利金僅是一小部分。
日本發布電力、天然氣及石油部門之去碳轉型金融路徑圖日本經濟產業省於2022年2月4日發布電力、天然氣及石油部門的「去碳轉型金融路徑圖」(トランジション・ファイナンスに関するロードマップ),作為各部門轉型金融之指引,確保資金持續投入,協助二氧化碳主要排放部門朝去碳化轉型,以實現2050年碳中和目標。 電力、天然氣及石油部門之「去碳轉型金融路徑圖」,係以科學根據為基礎,依據日本國內電力、天然氣、石油部門之現況及相關政策規劃,導入現階段具可行性之技術,確實推動減少二氧化碳排放;同時並針對未來技術的發展與革新目標訂定時間表,確保技術與各部門未來之發展能有助日本於2050年達成碳中和目標。一方面於企業欲透過轉型金融取得資金時,指引企業針對其現行氣候變遷對策進行檢討;另一方面,亦可協助金融機構審視企業於轉型融資時所提出之轉型策略與措施,以判斷是否符合轉型金融之資格。各部門主要重點如下: 電力:2020年開始導入轉型燃料(生質能、氫、氨與天然氣之混和燃燒),並逐步淘汰傳統火力發電;2030年確立去碳燃料(純生質能、氫、氨火力發電、再生能源等)相關技術,並推動商用化。 石油:2020年起開發石油製程節能技術,並推動轉型以天然氣為主要燃料;同時發展氫氣製造技術、二氧化碳捕捉技術,於2030年達成商用化。 天然氣:2020年起針對天然氣、液化石油氣進行節能製程、燃料利用效率、合成燃料相關技術開發,並擴大建置都市天然氣管線、確保液化石油氣配送途徑等。