美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。

該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。

當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。

針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。

其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。

最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

相關連結
※ 美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9036&no=55&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
英國資訊委員辦公室(ICO)發布企業自行檢視是否符合歐盟一般資料保護規則之12步驟

  英國作為歐洲金融重鎮,不論各行業均有蒐集、處理、利用歐盟會員國公民個人資料之可能,歐盟一般資料保護規則(General Data Protection Regulation,簡稱GDPR)作為歐盟資料保護之重要規則,英國企業初步應如何自我檢視組織內是否符合歐盟資料保護標準,英國資訊委員辦公室(Information Commissioner's Office, ICO)即扮演重要推手與協助角色。   英國ICO於2017年4月發布企業自行檢視是否符合GDPR之12步驟(Preparing for the General Data Protection Regulation(GDPR)-12 steps to take now),可供了解GDPR的輪廓與思考未來應如何因應: 認知(Awareness):認知GDPR帶來的改變,與未來將發生的問題與風險。 盤點資料種類(Information you hold):盤點目前持有個人資料,了解資料來源與傳輸流向,保留處理資料的紀錄。 檢視外部隱私政策(Communicating privacy information):重新檢視當前公告外部隱私政策,並及時對GDPR的施行擬定因應計畫。 當事人權利(Individuals'rights):檢視資料處理流程,確保已涵蓋GDPR賦予當事人如:告知權、接近權、更正權、刪除權、製給複本權、停止處理權、不受自動決策影響等相關權利。 處理客戶取得資料請求(Subject access requests):GDPR規定不能因為客戶提出取得資料請求而向其收費;限期於1個月內回覆客戶的請求;可對明顯無理或過度的請求加以拒絕或收費;如拒絕客戶請求則限期於1個月內須向其說明理由與救濟途徑等。 處理個人資料須立於合法理由(Lawful basis for processing personal data):可利用文書記錄與更新隱私聲明說明處理個人資料之合法理由。 當事人同意(Consent):重新檢視初時如何查找、紀錄與管理取得個人資料的同意,思考流程是否需要做出任何改變,如無法符合GDPR規定之標準,則須重新取得當事人同意。 未成年人(Children)保護:思考是否需要制定年齡驗證措施;對於未成年人保護,考慮資料處理活動是否需取得其父母或監護人的同意。 資料外洩(Data breaches):有關資料外洩的偵測、報告與調查,確保已制定適當處理流程。 資料保護設計與影響評估(Data Protection by Design and Data Protection Impact Assessments):GDPR使資料保護設計與影響評估明文化。 資料保護專責人員(Data Protection Officers):須指定資料保護專責人員,並思考該專責人員於組織中的角色與定位。 跨境傳輸(International):如執行業務需跨越數個歐盟會員國境域,企業則須衡量資料監管機關為何。

美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決

  美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。   最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。   一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。   該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。

新加坡金融監管局發布金融服務產業轉型藍圖,以提升金融科技創新力

  考量金融服務業面對科技之影響,金融領域必須轉型,以維持競爭力與時並進,新加坡金融監管局於2017年10月30日發布金融服務領域之產業轉型藍圖(Industry Transformation Map),旨於成為一個連結全球市場、支持亞洲發展,以及為新加坡經濟服務之全球金融中心。   該產業轉型藍圖包含了三部分,分別係:商業策略、創新與監理、以及就業與技能。   一、商業策略:成為領先國際財富管理樞紐。為推動亞洲發展,新加坡金管局預計與業界合作,將新加坡發展為私募市場融資平台。   二、創新和監管:發展重點為促進金融領域創新之普及,並鼓勵使用科學技術提升效率與創造機會,其具體方式包括: 透過API應用程式介面,鼓勵金融機構提升創造力和科技創新。 與金融機構合作打造常用的工具,如電子支付、電子身分識別(know-your-client)機制等。 促進和投資研發,開發新的解決方案,包括使用分帳式技術進行銀行間的支付與貿易融資。 擴展與其他Fintech中心之間的跨境合作協議,讓新加坡成為國外Fintech新創企業之育成基地。 使用科學技術,簡化金融機構監管。   三、就業和技能:新加坡金管局將擴大金融服務業的人才庫,加強新入和中期轉換跑道之人員在資訊科技上的專業技能。   該金融服務產業轉型藍圖之目標為,每年在金融領域達到4.3%實際增長值,並創造3,000個工作,其中金融科技領域部分達成1,000個工作機會。

何謂「國立研究開發法人」?

  國立研究開發法人為日本法制度下三種獨立行政法人類型的其中之一(其餘兩種為中期目標管理法人、與行政執行法人),任務乃是獨立於國家,發揮一定程度之自主性與自律性,從事在國民生活或社會經濟安定性等公益目的上所必要,但不須由國家為主體來執行的科學技術之實驗、研究與開發,並且這些科技研發業務,係基於具備一定中長期政策目標之計畫而進行,目的在於最大限度地確保得以提升國家科技水準、同時攸關經濟健全發展及其他公益的研發成果,並被期待產出得參與國際競爭的世界頂尖水準之新創科技,作為國家戰略的一環,同時專注於基礎科學與國家核心技術的研發。但在國立研究開發法人中,其所屬職員的身分並非公務員。   現在日本共有將近30個獨立研究開發法人,如日本醫療研究開發機構、森林研究‧整備機構‧新能源‧產業技術總合開發機構(NEDO)、國立環境研究所等。

TOP