美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。
該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。
當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。
針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。
其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。
最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
2021年10月13日G20第4次財長會議正式批准了數位經濟課稅最終政策協議,確立了136個國家和司法管轄區,應於2023年底前實施跨國企業利潤再分配制及全球最低稅賦制的改革計畫。 有關跨國企業利潤再分配制,以跨國公司平均收入達200億歐元且高於10%利潤率的量化特徵,打破了過往國際稅法以業務型態為依據的課稅權分配基礎。根據協議公報,200億歐元的課稅門檻將在未來8年內下修至100億歐元,以逐步實現公平的數位經濟課稅環境;至於跨國企業母國所在地、子公司所在地之分配比例,將於2022年初公布。 新的全球最低稅賦制,係以全球(相對於境內)為課稅範圍設定15%的標準稅率,針對年收入達7.5億歐元之跨國公司,衡量所在地國之有效稅率與標準稅率,補足稅率之差額以打擊跨國租稅套利。根據協議公報,制度預設8%有形資產與10%工資的扣除額,將於10年內逐步調降,以符合數位經濟低邊際成本的特性;至於有效稅率的計算,預計將於2021年11月公布。 此次最終政策協議的批准,不僅是取得愛爾蘭等原先反對國家的共識,同時確立了新制度計算公式與配套措施的提出時程,顯示出疫情後數位經濟課稅的急迫性再度受到重視。而我國雖積極發展數位經濟,然因目前尚未透過多邊協定框架加入改革計畫,因此在此數位經濟課稅方案確定前,我國如何接軌和因應國際制度將是重要課題。
英國提出通訊資料法之草案英國內政部於2012年6月提出「通訊資料法」之草案(Draft Communications Data Bill),並將於10月舉行公聽會討論。 所謂通訊資料,非指通訊內容本身之資料,而係指通訊過程中所留下的相關紀錄性資料,包括通訊帳號所有人之資料、通訊之時間、長度、來源、位置等。而目前蒐集通訊資料之用途,多半為犯罪之偵防、避免緊急危難或反恐怖活動。其所牽涉之議題重點則為向提供通訊服務之公司調閱相關資料時,該公司是否有提供之義務,及調閱機關是否有相關權限或對資料之應用是否符合調閱之目的。 此次所提出之草案,主要可分為三大部分:第一部分賦予公務機關調閱資料之權限,並規定使用該等資料過程中,相關的安全保護措施與法定程序要求。第二部分規定調閱資料所必須的法定審查流程,包括主管機關內具備權限的高階主管,應依據比例原則,決定是否可調閱資料,並在一定情況下,須經司法機關審查。另外,國務大臣應建立一定審查機制,審核各主管機關之調閱目的與調閱程序恰當與否。最後,第三部分則是有關提升審查制度運作可能性之規定,諸如明訂各個機關所享有之調閱權,以及提供郵務及電信業務經營者相當之資源以配合機關調閱資料之需求。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。
新加坡將推動國家電子醫療紀錄新加坡自今年(2018年)1月5日起推動「醫療服務法案(Healthcare Services Bill)」之制定,該法案預計取代現有「私人醫院和醫療診所法(Private Hospitals and Medical Clinics Act)」。其中「國家電子醫療紀錄(National Electronic Health Record),下稱NEHR」將整合並改善國營醫療機構及非國營醫療機構兩種醫療紀錄無法互通之情形,而行動醫療及遠端醫療亦納入之。 根據目前之諮詢狀況(已於今年2月15日結束),提案單位衛生部(Ministry of Health)表示,由於現代醫療技術已趨近複雜,若能整合各醫療單位之就診紀錄,將可大幅提升醫療效率,特別是在急診的狀況下,整合過的單一病歷將可降低評估所需的時間。 而對於病患之個資方面保護,該部表示,首先,NEHR並不會蒐集全部患者的醫療參數,只有患者之核心醫療參數才會上傳至NEHR之資料庫內,此外亦不提供非醫療目的外之使用(例如就業及保險評估)。而為降低非法使用之機率,非法使用亦將處罰之。 另外為尊重病患個人之資訊自決權,NEHR亦提供了病患選擇退出機制(opt-out)以作為個資保護的最後屏障。然而該退出機制仍不同於一般的退出機制(即退出後不得蒐集、處理及利用),該機制僅禁止各醫療機構讀取該病患之醫療紀錄,但是各該機構依NHER之架構仍應將每次就診紀錄上傳之,此一設計係避免緊急情況下或病患同意讀取電子病歷時,卻無醫療紀錄可供查詢之窘境。