美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。
該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。
當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。
針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。
其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。
最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國加州通過綠色化學法規由於完善控管機制迄今仍付之闕如,而市面上諸多含有危險化學物質的產品,尚無法立即要求廠商將之下架或提出解決方案,因此引起消費大眾、學界人士及公共健康倡議團體對於消費安全之關切;美國加州為有別於僅針對危險化學物質逐項管理的一般法令,轉而採取整體規範之包裹立法方式,於2008年9月底通過AB 1879與SB 509兩項綠色化學法規,增訂於「健康與安全法典(Health and Safety Code)」,促使商品在設計階段減少毒性物質之接觸。 根據AB 1879法令,由加州環保署(California Environmental Protection Agency) 所管轄之毒性物質控制部門(Department of Toxic Substances Control),現行除具備管理危險材料之儲存、使用與廢棄等法定職責外,另新增計畫如下: (1) 應於2011年1月1日前修改法規,優先針對引發關切的危險化學物質進行生命週期評估,並將評估結果遞交加州環境政策議會(California Environmental Policy Council);此外,毒性物質控制部門應研發潛在替代品,研擬減低或避免化學物質暴露之方法。 (2) 於2009年7月1日前成立綠絲帶科學小組(Green Ribbon Science Panel),用以管理奈米科技、風險分析、公眾健康等十五項與危險性化學物質相關之題材,並為日後政策修訂提供具科學基礎之建議。 (3) 除非另有法規限制,應要求業界呈報管理化學物質之詳細資料,公開作為民眾參考之用;如涉及商業機密,應有程序上之保障。 再者,SB 509法令要求環境健康風險評估辦公室(Office of Environmental Health Hazard Assessment)彙整危險化學物質之特性,並由毒性物質控制部門建立線上資料庫,使民眾便於查詢危險化學物質之相關資訊。 綜上所述,綠色化學法規的訂立,係回應消費大眾對於市售產品之疑慮,因而植基於科學界與現實生活,著重危險化學物質運用及暴露時所為之風險評估,並期於2011年前得以有效掌握化學物質,進而維持勞動環境安全、減少處理毒性廢棄物之成本,達成保護生態與民眾健康之目標。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
美國專利商標局與以色列專利局宣布以色列專利局參與合作專利分類美國專利商標局(The United States Patent and Trademark Office,簡稱USPTO)與以色列專利局(The Israel Patent Office,簡稱ILPO)宣布以色列專利局將參與合作專利分類(The Cooperative Classification Patent,以下簡稱CPC)系統。以色列專利局是以色列智慧財產權審查及註冊的主管機關,主要負責智慧財產權如專利、設計、商標的審查、註冊及異議。 CPC已於2013年1月正式啟用。美國專利商標局及歐洲專利局(European Patent Office,簡稱EPO)自2010年10月共同發展一個可用於雙方不同審查程序的相容分類系統,降低工作上不必要的重複作業以強化效率。美國專利商標局局長Michelle K. Lee.表示:「合作專利分類系統了除證明美國專利商標局與以色列專利局良好的關係及合作精神外,更能夠幫助國內外申請專利的創新者與企業。」 美國專利商標局已於2016年7月提供以色列專利局CPC的相關訓練。美國專利商標局及以色列專利局預計進一步著手進行更深入的CPC相關訓練與交流事宜。以色列專利局及美國專利商標局之間的合作正持續擴展當中,並已達到以CPC為以色列專利局所收藏之專利進行分類的目標。以色列專利局局長Asa Kling表示:「隨著新系統的轉變,以色列專利局將強化審查專業及效率,並改善提供給以色列申請人的服務。」