美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。

該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。

當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。

針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。

其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。

最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

相關連結
※ 美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9036&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
美國最高法院判決單離DNA片段不具專利標的適格性

  2013年6月13日美國最高法院(the Supreme Court of the United States)就備受矚目之Association for Molecular Pathology v. Myriad Genetics, Inc.一案做出判決,認定如乳癌易感基因BRCA1、BRCA2等經單離(isolated)的人類DNA片段不具美國專利法第101條(35 U.S.C. §101)所規定之專利標的適格性。   美國最高法院指出,雖然專利權人發現了BRCA1與BRCA2基因的位置與序列,但是其並未創造或改變BRCA1與BRCA2基因上的任何遺傳資訊,亦並未創造或改變該DNA片段的基因結構,所以即使其是發現了一個重要而有用的基因,但僅是將其從周遭其他基因材料中分離出來,並非為一項發明行為。亦即是說,突破性、創新或卓越的發現並不必然符合美國專利法第101條之要件要求。   不過,美國最高法院認為,cDNA片段可以具備專利標的適格性,因為其為從mRNA所創造出來、僅具備外顯子(exons-only)的分子,而非自然發生之自然產物。然而美國最高法院對於cDNA是否符合其他可專利要件之要求並不表示意見。   美國最高法院亦強調,本案判決並未涉及任何方法發明,亦未就將有關BRCA1與BRCA2基因之知識予以應用的發明做出判斷,且未判斷自然發生之核苷酸順序經改變的DNA片段是否具備專利標的適格性的問題。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

德國發布國家資料戰略─《透過資料利用取得進展》

2024年德國預計制訂或修正多部法規,以達成2023年8月公布的德國資料戰略《透過資料利用取得進展》(Fortschritt durch Datennutzung)文件中所設定的目標。該戰略由內政部、經濟與氣候行動部、數位與交通部聯合訂定,規劃德國資料政策與法規的工作進程,以期打破資料封閉的現狀、拓展資料應用的範圍。 德國資料戰略目標與重點摘要如下: 1.更多的資料: (1)公部門資料:藉由統整跨部門的資料增加資料的可近用性,並透過新訂法規提升資料近用機會,包括《交通資料法》(Mobilitätsdatengesetz)確保交通資料的品質和使用規則、《聯邦透明度法》(Bundestransparenzgesetz)作為取得政府資料的法源依據、《研究資料法》(Forschungsdatengesetz)簡化科研資料的取得,以及為增加健康資料二次利用起草的《健康資料利用法》。 (2)私部門資料:德國政府將訂定並提供資料共享之契約範本,以降低資料的交易、操作成本,並評估增修公平競爭相關法規來協助企業間的資料合作。另將新訂《員工資料保護法》(Beschäftigtendatenschutzgesetz),重整散於歐洲人權法院及德國國內與員工資料相關之規範。 2.更好的資料:德國將積極參與國際資料標準訂定與遵循,確保資料的品質、互操作性,以及標準化的資料描述。相關工作包括草擬關於業者使用cookie等數位追蹤技術如何取得使用者同意的管理規範,並將依歐盟準則評估是否訂定不法重新識別之刑責;另外預計建立文化、農業等主題資料室用以協助政府決策。 3. 資料利用和資料文化:為使資料可持續地利用與發展,政府機關方面將設置資料專責人員,並在以政府資料訓練大型語言模型技術時由新設的資料諮詢中心協助。公民數位能力方面,將於STEM 2.0教育計畫中規劃培育資料概念,促進未來社會發展出更多樣的資料應用機會。 德國資料戰略涉及政府、企業、研究單位和公民各層面,顯示資料的重要性逐漸成為德國重大的課題,亦是我國在建立資料治理時如何確保資料品質、交換義務與使用規則的參考方向。

歐盟發佈降低建置高速電子通訊網路成本草案

  數位議程(Digital Agenda for Europe)規劃2020年全歐洲基本寬頻30mbps以上、且超過一半家戶數具有100mbps接取能力設為目標。歐盟為達成此計畫,在今(2013)年3月發佈「降低建置高速電子通訊網路成本草案」(Reduce The cost of Deploying High-speed Electronic Communications Network)。有鑑於過去調查,挖掘道路佔總光纖基礎建設成本80%,且導致電信商投資低密度、偏遠地區具有龐大壓力。是故,本草案制訂後,不僅可減少30%成本(約400~600億歐元),亦降低既有業者建設壓力與增加新進業者進入市場,使高速網路(30M)能迅速普及於歐洲。   歐盟以發展高速網路為前提,在本部草案中給與基礎供應商(Network Operator)諸多規範,其中又以「共同開挖工程設施」與「開放物理設施」最為重要。共同開挖工程設施是指基礎供應商(Eg:瓦斯、電力、水力、電子通訊業者)有權利可與其他基礎業者協商,共同進行工程建設(例如挖馬路)。基礎供應商應遵守資訊公開與不歧視原則,並在收到通知後的1個月內,須與相對人進行協商。主管機關接到申請後,須於六個月內進行審駁。歐盟認為此舉不僅可減少成本外,亦可減少挖斷管線的情形發生,使現有基礎建設每年可省下五千萬歐元的維修費。   開放物理基礎設施(Physical Infrastructure)方面,是指每個基礎供應商皆有權利與義務開放包含管道、天線桿、人孔蓋(Manholes),以及任何建築物或可進入建築物等設施。因此,電子通訊網路(electronic communications network)業者可透過基礎供應商提供的物理設施(Eg:管道)之位址、大小,與所有權人姓名,在公開、合理無歧視的價格下,取得使用權。   由於,既有建築為了接取高速網路而進行裝修,其造價不菲,為了降低電子通訊網路鋪設的成本,是故,本部草案要求在核發建築許可前,新建物或重建建築須具備高速網路設備至網路終端(network termination points)。這項規定,不僅可降低業者建置網路的成本外,在網路服務商皆有權利使用基礎設備進行服務,預計消費者將可享有物美價廉的網路。   雖然,這些新的規範亦有但書,諸如當基礎設施開放後會干擾原服務、造成危險,亦或視重建建築比例,評估是否需賦予配置網路設備等,使部分輿論認為短期將難以看到成效。不過,隨著時間的演進,就如同歐盟執委會副主席Neelie Kroes所敘,很難想像購買一棟房子將會缺少水、電,而網路亦是如此。因此,當網路成為民生必須後,可以預期關鍵設施的開放、建設成本的降低與民眾需求提高,將使網路普及更為迅速。

TOP