美國食品藥物管理局發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》指引草案

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年7月14日發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》(Postmarketing Studies and Clinical Trials: Determining Good Cause for Noncompliance with Section 505(o)(3)(E)(ii) of the Federal Food, Drug, and Cosmetic Act)指引草案,說明FDA如何判定處方藥廠商未遵守上市後要求(Postmarketing Requirements, PMRs)的正當理由。

根據聯邦食品、藥品和化妝品法案(Federal Food, Drug, and Cosmetic Act, FD&C Act)第505(o)(3)節,應完成PMR的廠商必須向FDA更新研究或臨床試驗進度的狀態及時間表,例如:提交最終版本計畫書、完成研究/臨床試驗、提交結案報告。廠商若未向FDA更新上述PMR資訊即違反FD&C Act,除非廠商提出正當理由。

未遵守PMR的正當理由應符合下列三項條件:

一、與錯失時程直接相關的情況。

二、超出廠商的控制範圍。

三、當初制定時間表時無法合理預期的情況。

該指引草案舉例說明可能的正當理由及非正當理由,另建議廠商提交年度報告前主動通報PMR進度的狀態,並在預期錯過時程之前儘快提供理由,亦須採取矯正PMR不合規行為的措施,包括立即制定矯正計畫、主動向FDA通報實際或預期的延誤,以及修訂合理的時間表。未遵守PMR的廠商可能會收到FDA的警告信(Warning Letter)或無標題信(Untitled Letter)、不當標示指控(Misbranding Charges)和民事罰款,FDA將根據廠商是否採取矯正措施來確定罰金。

「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」

相關連結
※ 美國食品藥物管理局發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》指引草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9038&no=64&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

藥品專利聯盟與藥廠達成首件授權協議

  國際藥品採購機制(UNITAID)為協助開發中國家取得價格可負擔的人類免疫缺陷病毒(Human Immunodeficiency Virus,HIV)及愛滋病(Acquired Immuno-deficiency Syndrome,AIDS)用藥,2009年12月時即宣布成立「藥品專利聯盟基金會」(Medicines Patent Pool Foundation,MPPF),提供5年約442萬美元作為促進各大藥廠投入專利於所組之藥品專利聯盟(Medicines Patent Pool,MPP)之經費。去(2010)年7月,MPPF在瑞士登記成立後,立即展開與藥廠協議將其專利授權給MPP,以及同意MPP再授權給其他藥廠生產製造相關藥品之行動。   經過近1年努力,今(2011)年7月,MPPF終於與第一家美國藥廠Gilead Sciences達成授權協議,將旗下的Tenofovir(此為B型肝炎治療用藥)、Emtricitabine、Cobicistat、Elvitegravir及前述藥品固定劑量之單一藥丸產品Quad,授權給MPP再利用。接下來,MPP預計還要繼續向Abbott Laboratories、Boehringer-Ingelheim、Bristol-Myers Squibb、Merck & Co、Roche、Tibotec / Johnson & Johnson及Viiv Healthcare等藥廠爭取授權。   根據Gilead藥廠授權協議,MPP得以無償、非專屬、不可轉讓方式製造、使用、邀約販賣及販賣前述藥品,並將之再授權給印度學名藥廠;合法的被再授權人(Sublicensee)得出口及販賣其藥品,並支付3-5%權利金,但被再授權人若是為12歲以下兒童病患開發液體狀、可分散之兒科醫學劑型配方時,則可例外無須支付權利金。雖然Gilead藥廠之授權協議在內容上仍有諸多值得檢討之處,例如只限授權給印度學名藥廠、提供臨床試驗階段之Cobicistat、Elvitegravir及 the Quad藥品,雖確實可使開發中國家最快速度享受到最新的有效藥,但不免會引起是否涉及開發中國家新藥人體試驗之揣測。但無論如何,MPP成功獲得Gilead藥廠之授權,除打破外界先前對於MPP能否實際說服商業藥廠為公益目的加入之質疑,藉由雙方所訂之對象、範圍、權利金與例外等授權條件,更能明確看出MPP日後實際運作將採之方式。

Syngenta位於巴西Parana的基改研究機構遭到當地政府沒收

  瑞士跨國種子及作物科技公司Syngenta AG (SYT)正與巴西政府為基改活動展開訴訟。去(2006)年11月9日,Syngenta在巴西境內基改作物研究機構被迫關閉,研究機構所在地的Parana州州政府並以Syngenta違反巴西聯邦環保法規為由,沒收其所有投資的資產。Parana州境內有一座自然保護區-伊瓜蘇國家公園,伊瓜蘇國家公園是舉世著名的伊瓜蘇瀑布(Iguacu Falls)的所在地。根據巴西聯邦環保法規規定,基改作物不得栽種於自然保育區的十公里以內。   Syngenta位於Parana州的基改研究機構佔地達123公頃,然而距離伊瓜蘇國家公園卻僅約有六公里。1986年以來,Syngenta即已擁有該研究區域的產權,目前Syngenta已向巴西聯邦法院提出告訴,主張其得以合法在研究機構所在地進行相關研究。Syngenta抗辯理由主要有二:其一,Syngenta在該地進行基改作物田間試驗的許可,是由巴西聯邦政府的生物安全主管機關CTNBio所核發;其二,2006年初,巴西總統已將前述10公里的栽種間隔距離更改為500公尺。Parana州政府、巴西環境保護局Ibama、主張農業改革的活動份子等則主張,新的500公尺間隔規定不適用於Syngenta,蓋該公司早在巴西總統簽署新規定以前即已展開相關的試驗活動,Parana州環保主管機關早已祭出處罰,但Syngenta迄今未繳納罰鍰。

日本最高法院新判決裁定日立需支付前員工發明報酬一億六千萬餘日圓

  日本最高法院最近裁定,日立( Hitachi )必須支付一億六千三百萬日圓(約四千五百萬台幣)給取得三項光碟讀取技術發明專利的前工程師米澤成二( Seiji Yonezawa )。一九九六年退休的米澤,於一九七三到一九七七年間,將其開發出來的三項有關光碟讀取技術發明專利移轉給任職的日立公司,當時他僅獲日立支付二百三十萬日圓酬勞,米澤嫌酬勞太少而提起訴訟,要求日立支付二億八千萬日圓酬勞。   東京地方法院於二○○二年作成的裁定,認定日立因該專利在日本國內所獲利益約兩億五千萬日圓,依米澤的貢獻度百分之十四計算,命令日立支付約三千五百萬日圓。但在日立上訴至東京高等法院的第二審,高院於二○○四年裁定,加上日立在英美等六個外國取得專利所獲利益約共十一億八千萬日圓,扣除已支付金額,日立應再支付約一億六千三百萬日圓酬勞給米澤。米澤原本訴請日立支付發明報酬兩億八千萬日圓,此案在最高法院駁回日立提起的上訴後判決定讞。   根據日本特許法(專利法)規定,受雇人取得發明專利時,企業需支付相對報酬予發明人,不過對於報酬之合理性,受雇人及雇用人近年來迭有爭議並訴諸司法解決。雖然日本國會在 2004 年 5 月 28 日 通過專利法修正案,進一步使報酬之計算要件更加具體、明確化,日本專利局也隨後在 2004 年 11 月公布「新受雇人發明制度之程序個案研究」( The Case Studies of the Procedures under the New Employee Invention System ),以問答方式闡釋新修正之發明人報酬規定之意義與適用方法,並尋求一個較為合理的標準,提供受雇人與雇用人間訂定報酬金時之參考。   然而,境外專利權是否應該列入報酬金之計算,新法則未規定,故此問題仍然存在,對此下級法院的判決不一,日本最高法院最近做出確定在海外取得的專利亦得支付相對報酬之裁決,這項司法裁定,勢必會影響到擁有國外專利的眾多日本企業。

TOP