美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。
在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。
Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。
在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形:
1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。
2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。
據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。
由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國交通部(Department for Transportation, DfT)於2023年8月30日提出「交通行動服務(MaaS)實務準則(Mobility as a Service: code of practice)」,內容針對MaaS之提供商,提出產品及服務建議。MaaS實務準則涵蓋包含以下五個面向,以提供MaaS廠商具體明確的產品設計及營運建議: 1. 交通包容性與近用性(accessibility),例如應盡力避免產品之AI演算法產生偏見、確保AI學習資料無偏差;產品介面應提供視覺、聽覺輔助功能;針對身障民眾應提供適當之交通路線建議,以及應提供偏鄉、無網路區域非線上(offline)服務管道; 2. 低碳運輸之推廣,如納入更多步行、單車等環保交通選項; 3. 友善之多元支付方式,如現金、數位支付、定期套票,並整合火車、地鐵、客運、公車之支付系統; 4. 資料分享與資料安全並重,保障使用者隱私,如採用公認之資料安全標準以及與同業簽訂資料共享契約; 5. 重視消費者權益保障,鼓勵平台間公平競爭,如釐清各參與者間之責任,避免消費者投訴無門,以及提供線上及非線上聯絡窗口,及時處理消費者需求等。
何謂「循環經濟」?循環經濟(Circular Economy)不僅是資源回收或廢棄物利用,循環經濟強調的核心概念是創造資源利用的最大效益,有別於傳統經濟模式在資源利用上「開採、製造、使用、丟棄」的線性歷程,循環經濟加入了減少廢棄物產生、資源重覆與有效利用的概念,讓資源利用與產品的生成不再是有去無回的單向線性歷程。 循環經濟的概念能夠套用到所有產品的生命歷程當中,自產品設計、生產、物流、銷售、使用、回收,到投入新的產品生命歷程,以環型的資源利用歷程,加入各種資源再利用的方式,並盡可能減少真正廢棄物的生成。與此相關聯的包含新興科技如大數據、物聯網之應用,到創新商業模式的生成,都可以是循環經濟的一部分。 循環經濟所揭示的概念,是讓產業發展與環境保護能攜手同行,創造資源利用的最大效益。在歐盟「展望2020計畫」(Horizon 2020)當中,也同樣把循環經濟列為計畫的重要領域之一,循環經濟時代來臨所揭櫫的不僅僅是在資源回收、或是幾種廢棄物再利用的技術,而是對經濟體系當中資源運用歷程的重新形塑,與新興科技及商業模式創新均密不可分。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
德國聯邦議院通過能源效率法,節能目標將入法德國聯邦議院於2023年9月21日通過《能源效率法》(Energieeffizienzgesetz, EnEfG)草案,確立德國能源效率目標,並規範公部門及企業的具體效率措施,及首次定義資料中心的能效標準,本法並要求德國2030目標應符合歐盟能源效率指令(EU Energy Efficiency Directive, EED)。預計聯邦參議院將在10月底審議該法律,之後將盡快生效。本次修法重點如下: 1.能源效率目標:EnEfG規定2030年德國減少初級和最終能源消耗的目標,以及2045年減少最終能源消耗的目標。以最終能源消耗而言,此代表著2030年減少約500TWh(與目前水準相比)。未來,聯邦政府將在立法期開始時,定期向聯邦議院通報目標實現情況,並在必要時決定調整工具組合。 2.聯邦及各邦的節能義務:從2024年起,聯邦政府和各邦政府有義務採取節能措施。至2030年,聯邦及各邦的最終能源消耗每年各分別節省45TWh和3TWh。 3.公部門在節能減排方面樹立榜樣:為了使聯邦和邦層級的公部門在提升能源效率方面能做為表率,未來將導入能源或環境管理系統。此外,EnEfG也規定節能措施的實施,目標是每年最終能源消耗減少2%。 4.企業能源或環境管理系統:EnEfG要求能耗較大(超過平均7.5GWh)的企業導入能源或環境管理系統,最終能源消耗總量為2.5 GWh以上的企業,則需要在實施計畫中,記錄和公布節能措施。此種作法不僅提高能源消耗的透明度,同時也讓企業可自行決定導入哪些措施以及預計的成果。 5.資料中心的能源效率及餘熱要求:新的資料中心應遵守能源效率標準,還必須利用餘熱(Abwärme)。未來,所有大型資料中心營運商應使用再生能源電力,並於公共登錄冊中記載能源消耗的資訊,以及向客戶告知其具體能源消耗狀況。 6.餘熱的避免與利用:未來應盡可能避免生產過程中產生餘熱。如果無法避免,則應利用餘熱。此外,有關企業餘熱潛力的資訊將綁定並公布在一新平台上。