用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=55&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
美國士兵曼寧因向「維基解密」網站洩漏國家外交及軍事情報而遭起訴22項罪名

  美國的情報分析員一等兵布蘭德利.曼寧(Brandly Manning),被控訴22項包括通敵罪、非法取得並散布外交及軍事機密的文件給「維基揭密」網站等妨害國家安全罪名,現被拘禁在馬里蘭州的米德堡。     曼寧一審由軍事法院審理,但軍事上訴審法院認為管轄權有爭議,為決定是否繼續適用軍事法院的審理程序,今年10月10日舉行預審聽證會,由五人一組的普通法院法官受理。同時,維基解密、憲法人權中心、美聯社等新聞媒體,均要求軍事法庭依憲法第一修正案,提供曼寧案的相關卷宗資料,但政府發言人查得費雪上尉(Captain Chad Fisher)表示,第一憲法修正案沒有絕對的效力,也未賦予法院公開卷宗的義務。若記者和大眾想獲得案件的文件資料,可透過「情報自由法」申請。但依「情報自由法」的申請程序非常冗長,而且美聯社和曼寧的辯護律師大衛.庫姆斯(david Commbs)的申請都已遭拒絕,律師大衛只能在私人網誌上向關心曼寧案的民眾公布案件進度和內情。     憲法人權中心的律師Shayana Kadidal 表示,不公開卷宗資料,就算參與了聽證會也無法理解案件的真實面貌,而無法做出準確的報導。但軍事法院對於憲法人權中心、新聞媒體及公眾要求公開法庭卷宗的訴求依然無動於衷。軍方和憲法人權中心將在之後會提交聲請,解釋為何他們認為軍事上訴審法院有權裁決卷宗是否公開。     曼寧下次庭期是明年2月4日,若通敵罪成立,曼寧將會被判終身監禁。

日本內閣府公布最新科學技術基本計畫草案,期以智慧聯網服務平台實現超智能社會

  日本內閣府2015年12月10日於「綜合科學技術創新會議」上公布最新「科學技術基本計畫」草案,預計將投入26兆日圓,約占GDP1%的資金。該計畫之法源基礎係1995年公布之《科學技術基本法》第9條第1項,要求政府自1996年開始制定以五年為期,整體、宏觀且跨部會之科技發展計畫,目前最新之「第五期科學技術基本計畫」將於2016年開始施行。   「第五期科學技術基本計畫」共計七章,作為本期計畫核心之第二至第五章,揭櫫四大原則及相應規畫: 一、 以未來產業創新及社會變革為方向創造新價值(第二章)   旨在發展對未來產業創新及社經變遷具有前瞻性之技術及服務,如智慧聯網、巨量資料、人工智慧等,並以此為基礎實現領先世界之「超智能社會」。 二、 因應經濟社會新課題(第三章) 1. 確保能源、資源及糧食供應穩定。 2. 因應超高齡化、人口減少等問題,打造永續發展的社會。 3. 提高產業競爭力及地區活力。 4. 確保國家安全及國民安全。 5. 因應全球範圍內發生的社經問題,並對世界發展做出具體貢獻。 三、 強化科技創新基礎能力(第四章)   企圖打破產官學界間障壁,加速人才流動及人才多樣化,對造成障礙之制度進行改革,此外,將增加青年及女性研究者比例,及提升學術論文品質。 四、 構築人才、知識、資金三要素的良性循環制度以朝向創新發展(第五章)   將透過產官學界合作,打造創新人才培育及適其發展之環境,強化國際知識產權及標準化之運用,並依國內各區域特性推動相關創新措施。   在這當中,「實現超智能社會」為本期計畫最重要之發展目標,由於資通訊技術高度發展帶動生產、交通、醫療、金融、公共服務等各方面之巨大變革,創造出新產品、新服務,卻也相應帶來新挑戰及社會問題,日本政府計畫打造「智慧聯網服務平台」(IoTサービスプラットフォーム),將內閣府2015年6月19發布之「科學技術創新綜合戰略2015」中所列舉的11個系統分階段完成串連整合,以推動跨系統間之數據應用,達成各科學領域巨量資料之流通使用,同時兼顧資訊安全保障的「超智能社會」。

美國太空軍是否已經輸掉了第一場戰爭—商標戰爭

  美國在2019年12月20日建立一支新的軍種—太空軍(Space Force)。這代表以往存在於科幻的宇宙部隊將躍然於現實,但美國太空軍可能會在商標戰爭中,輸給Netflix的喜劇影集「Space Force」。Netflix早於美國政府在歐洲、澳洲、墨西哥等地取得「Space Force」商標,但其並非為搶先美國政府進行註冊,而係為能銷售相關商品。   美國商標法採取先使用主義,即使後使用者先進行註冊,先使用者還是可以取得商標。Netflix自2019年初即開始即在全球廣泛採用「Space Force」做為商標,基本上「Space Force」之商標權應歸屬於Netflix。美國空軍則是在同年3月以「Space Force」申請商標做為一般的使用。然而,美國政府長期以來也有諸多關於軍事資產涉及商標保護之案例,例如派拉蒙影業(Paramount Pictures)在1995年至2005年間六次申請註冊「JAG」(Judge Advocate General)商標,但政府立場並未特別反對。   美國國防部(簡稱:DOD)針對商標授權使用,於商標許可指南(DOD Trademark Licensing Guide)中,說明對於美國軍隊徽章及標緻之使用方式,並於2007年推出了國防部品牌和商標許可計畫(DoD Branding and Trademark Licensing Program)。在此之後,美國海軍陸戰隊開始向大部分銷售標示有「USMC」T恤之電商,請求不得再銷售標示有相關文字之T恤。回到本事件,美國太空軍發言人表示,對於與Netflix可能存有商標爭議並不知悉,但希望Netflix能延續該節目,以做為良好的宣傳。

英國國家統計局政府資料品質中心發布《政府資料品質框架》

  英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。   英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。

TOP