用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=55&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
Google, Yahoo質疑猶他州的商標法

  立法者在高科技經營者會議後表示,「美國猶他州的法律設置商標註冊規定,將針對網路廣告競爭者可能不強制限制,而這項規定在星期一就會生效。   Google、eBay、Yahoo、微軟等公司的負責人與立法者在星期三會面,並正式對此提出抗議。   執行長克拉克說到:「我希望我們在兩個月前就能和產業互動,這對我們來說情況較佳。」   法律允許任何公司去創造一個電子商標並阻止競爭者用這些商標,去避免利用這些關鍵字商標在搜尋引擎和其他網站上出現。   星期二立法機關一致通過此項保護商標法律,儘管州律師提出警告,他們將會在法院上推翻這項法律。   Google和其他網站允許競爭者有權利去投標商標或產品的名稱。廣告競爭者會因競標而顯現在搜尋結果的網頁上。   陳情者羅傑說到,在與立法者談判後,訴訟是最不可能的方式。我們所投入的是幫助政策制定者去察覺到立法機構需要被修正並且也許需要被廢除。   羅傑說當談判破裂,這兩位發言人問我們,假使我們有意願去看到可以達到他們的意願並且不會產生可能發生有害影響的方法。   克拉克不確定是否會推翻這項法律,但他說我們必須為此做些事。   伊適特曼說,「立法者正設法去阻止公司免於被偷竊商標,或阻止戲弄消費者使他們在買產品時產生混淆的情況。」

中國大陸國務院印發關於實施《促進科技成果轉化法》之規定

  中國大陸於2015年8月29日修改了其《促進科技成果轉化法》,為了該法的實施,中國大陸國務院於今年2月17日的常務會議中,即發表了其對於鼓勵研究機構及大專院校之科技研發成果運用的相關措施;而針對這些措施,中國大陸國務院於同月26日制定了相關的具體規定,並在3月2日時發布,並行文於各相關機關。   該規定分作16點,主要分三個大方向,包括促進研究機構及大專院校的科技研發成果轉移於民間企業、鼓勵科技研發人員發展創新技術以及創業活動,與科技研發環境的營造等等。   具體而言,其主要措施包括允許研發機構得自主決定其科技研發成果的運用,原則上不需要向政府申請核准或報備、其運用後的收入不需繳交國庫,得全部留於研發機構內,用於對研究人員之獎勵及機構內科技研發之用、其並對該收入用於對研究人員獎勵之比例下限作出明文規定、允許國立研發機構及大專院校之研究人員在一定條件下得保留原職位在一定期間內至民間企業兼職,或進行創業活動,以從事科技研發成果的運用,以及對研發機構的考核標準應納入對機構之科技研發成果及運用的評鑑等等。

日本經產省公布產業版資料契約指引和資安手冊

  日本經濟產業省於2017年起提倡「Connected Industries」,其中一項重點任務為「平台、基礎設施安全」。為達成上述任務,經產省召開「平台資料活用促進會議」(プラントデータ活用促進会議),於2018年4月26日制定公布「資料契約指引產業保安版」(データの利用に関する契約ガイドライン産業保安版)及「物聯網安全對應手冊產業保安版」(IoTセキュリティ対応マニュアル産業保安版),以因應資料經濟時代資訊外洩及網路攻擊等風險。   日本經產省為促進業界資料流通與利用,已陸續於2015年、2017年和2018年制定「推動現有資料交易為目的之契約指引」(既存のデータに関する取引の推進を目的とした契約ガイドライン)、「資料利用權限契約指引」(データ利用権限に関するガイドラインVer.1.0)。本次「資料契約指引產業保安版」則進一步整理資料權利歸屬判斷方式,提供模範條款及說明各條款內容,並羅列作為資料提供者可能具備之優點。此外,隨著物聯網等資訊科技發展,資安風險逐漸受到重視,為提升物聯網產品安全防護,經產省亦以平台管理者為對象,制定「物聯網安全對應手冊產業保安版」,提供適當安全對策及案例。

日本總務省公布AI運用原則草案

  日本總務省於2016年10月起召開AI聯網社會推進會議(AIネットワーク社会推進会議),該會議於2018年7月17日公布「報告書2018─邁向促進AI運用及AI聯網化健全發展」(報告書2018-AIの利活用の促進及びAIネットワーク化の健全な進展に向けて-),提出「AI應用原則草案」(AI利活用原則案)。   「AI應用原則草案」制定目的在於促進AI開發及運用,藉由AI聯網環境健全發展,實現以人為中心之「智連社會」(Wisdom Network Society:WINS),其規範主體包括︰AI系統利用者、AI服務提供者、最終利用者(以利用AI系統和服務為業)、AI網路服務提供者、離線AI服務提供者、商業利用者、消費者利用者、間接利用者、資料提供者、第三者和開發者;草案內並根據上開規範對象間關係,整理各種AI運用情境,最終提出「適當利用」、「適當學習」、「合作」、「安全」、「資安」、「隱私」、「尊嚴自律」、「公平性」、「透明性」、「歸責」等十大AI應用原則。總務省表示將持續檢討完善AI應用原則草案細節,以「利用手冊」等形式公布,提供民眾參考。   行政院於2018年初推出「台灣AI行動計畫」,將整合5+2創新產業方案,由相關部會協助發展100個以上的AI應用解決方案,日本總務省所整理之AI應用情境與研提之應用原則,或可作為我國未來推動AI發展之參考。

TOP