用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=55&tp=1 (最後瀏覽日:2025/11/26)
引註此篇文章
你可能還會想看
替代能源有著落了?!

  國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。   生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯二甲酸( TPA )後,可做為保特瓶等塑膠容器。   除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約○.二至○.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。

智慧綠建築推動方案之修正—新增公有新建建築物應符合綠建築指標

美國2018年5月14日拜杜法修法生效,NIH同年10月因應修法公布對應修正的研發成果經費資助政策

  美國拜杜法案修改由美國商業部的國家標準暨技術研究院(National Institute of Standards and Technology;簡稱NIST)於2018年5月14日發布生效,美國各界稱此次修法案為新拜杜法或是2018拜杜法(new Bayh-Dole Act Regulations)。除此之外;國家衛生研究院(National Institutes of Health;簡稱NIH)也於同年10月公布對應修正的研發成果經費資助政策,並調整IEdison系統以符合新法規。本次修法釐清多項定義、減低法規負擔、解決受資助單位與資助單位共有發明的問題、簡化電子控管程序。修法內容簡要說明如下: 適用範圍不限組織規模,包括非營利機構、小企業、個人,並擴及大企業。 若聯邦雇員是研發成果的共同發明人,其所有權由聯邦資助單位擁有。 一連串時間修正。包括(1)聯邦政府取得研發成果所有權改為無時間限制(原來是60天)。(2)研究機構須在專利申請期限60天前回復聯邦不申請專利的決定(原來是30天)。(3)美國臨時案申請轉為正式專利申請案的時限改為10個月,因為還需要加上提前60天通知聯邦機構不申請專利。 研究機構有權在工作合約要求職員將研究發明權利讓與給研究機構。 最初專利申請的範圍擴及PCT申請以及植物發明品種申請(原本僅限專利申請以及臨時案申請)。

G20財長會議就跨國企業利潤再分配及全球最低稅賦制批准最終協議

  2021年10月13日G20第4次財長會議正式批准了數位經濟課稅最終政策協議,確立了136個國家和司法管轄區,應於2023年底前實施跨國企業利潤再分配制及全球最低稅賦制的改革計畫。   有關跨國企業利潤再分配制,以跨國公司平均收入達200億歐元且高於10%利潤率的量化特徵,打破了過往國際稅法以業務型態為依據的課稅權分配基礎。根據協議公報,200億歐元的課稅門檻將在未來8年內下修至100億歐元,以逐步實現公平的數位經濟課稅環境;至於跨國企業母國所在地、子公司所在地之分配比例,將於2022年初公布。   新的全球最低稅賦制,係以全球(相對於境內)為課稅範圍設定15%的標準稅率,針對年收入達7.5億歐元之跨國公司,衡量所在地國之有效稅率與標準稅率,補足稅率之差額以打擊跨國租稅套利。根據協議公報,制度預設8%有形資產與10%工資的扣除額,將於10年內逐步調降,以符合數位經濟低邊際成本的特性;至於有效稅率的計算,預計將於2021年11月公布。   此次最終政策協議的批准,不僅是取得愛爾蘭等原先反對國家的共識,同時確立了新制度計算公式與配套措施的提出時程,顯示出疫情後數位經濟課稅的急迫性再度受到重視。而我國雖積極發展數位經濟,然因目前尚未透過多邊協定框架加入改革計畫,因此在此數位經濟課稅方案確定前,我國如何接軌和因應國際制度將是重要課題。

TOP