用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。 隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為: 一、新數據社會(New Digital Society) 消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。 二、多層次合作(Multilevel Cooperation) 區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。 三、人力資源發展(Human Resource Development) 以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
開放臍帶血移植 再等等林口長庚醫院透過專案申請,已經完成10例「非親屬臍帶血移植」手術,病人術後狀況良好,都不需再輸血,有2人連抗排斥藥物都不需要。目前學界草擬的「臍帶血移植草案」已出爐,將放寬為常規手術,不過須審慎訂定符合手術的資格,開放與否還得再等。 林口長庚原本預計在2年內完成4例手術,結果半年內就完成,再度以專案申請,1年2個月下來共完成10例。參與的兒童醫院血液腫瘤科醫師江東和表示,參與試驗的病童,多為重度海洋性貧血,在臍帶血配對上,不那麼嚴格,術後恢復情形良好,加上家長口耳相傳,所以不斷有人希望透過此一途徑,救自己的孩子。 不過,林口長庚暫時無法再繼續「加班」,江東和表示經費是主因,這10例由於是試驗性質,醫療費用、門診追蹤費用,全由長庚的研究經費支付,不可能無限量供應。江東和表示院方對於臍帶血移植手術,累積的信心度很高,未來須視手術開放的程度,列為常規醫療還是專案申請,才能決定如何繼續這項治療方法。
歐盟RELIEF計畫於今(2016)年11月展開前商業化採購之市場公開徵詢有鑑於許多歐盟國家為日漸高漲的健康照護成本所困,歐盟於Horizon 2020政策下陸續推動會員國合作以更有效益的創新採購方式進行健康照護計畫的推展,以降低健康照護預算的壓力,RELIEF計畫即屬其一。歐盟於2016年2月啟動RELIEF計畫,聯合義大利、西班牙、瑞典三國,目的在發展創新ICT解決方案以協助慢性病患透過自我管理方式舒緩慢性疼痛、能夠持續獨立生活。欲採購的ICT創新服務為目前尚不存在於市場上、仍需經研發之解決方案,實為針對慢性疼痛自我管理解決方案的「研發服務」,該計畫係採「前商業化採購(Pre-Commercial Procurement, PCP)」方式進行跨國公告招標。目前RELIEF計畫正在進行PCP準備階段之公開市場徵詢,除了透過2個月(今年11、12月)的公開線上問卷調查業者意見,另將以workshop形式舉辦三場公開市場徵詢會議。 RELIEF計畫另一重要目標就是透過此計畫以建立完整PCP流程,讓未來參與相關計畫的公部門能夠熟悉並妥善運用PCP流程及工具 。「前商業化採購」為歐盟廣泛創新戰略中所指出能協助公部門採購「研發服務」的特殊採購程序,以滿足尚未存在市場上、仍需經研發的技術性創新需求,此程序不包含對研發成果的商業化採購,亦不受政府採購法之規範,能夠從需求面刺激廠商創新研發,讓研發從一開始即以機關需求為核心。 RELIEF計畫劃分為PCP之準備階段以及執行階段。於準備階段會進行PCP招標文件準備、採購團隊的需求及現有技術分析、公開市場徵詢(Open Market Consultation, OMC);由於採購機關對其需求尚無具體的規格描述,必須經廣泛的市場意見徵詢與溝通以進一步定義,正在進行中的OMC將聚集採購團隊、潛在投標者(例如對健康照護、數位照護、病患賦權與互動性有鑽研之ICT業者)、終端使用者等,以廣蒐相關利害關係團體意見並進行充分互動溝通,作為執行階段的重要參考基礎。 PCP正式公告後的執行階段即區分為階段A「解決方案設計(Solution design)」(計半年)、階段B「原型開發(Prototype development)」(計半年)、階段C「商業化前開發:場域測試(Pre-commercial development: field test)」(計一年)。各階段將設定參與廠商應達成目標,以篩選出較符合需求者始得進入下一階段,以維持廠商間良性競爭,於階段C最後決標予研發成果最符合計畫需求之廠商(可能1家以上)。 歐盟目前的創新推動策略上PCP屬尚未被充分運用的工具,從該計畫的規劃可見準備階段對後續PCP執行階段的重要性,透過其示範可供政策規劃者為借鏡,運用創新採購驅動產業創新發展以更有效益解決社會與政府需求。
美國競業禁止條款之修法趨勢及對離職員工之管理建議美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。 美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。 聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如: 1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等); 2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案); 3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度; 4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。 本文同步刊登於TIPS網站(https://www.tips.org.tw)