用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)於2019年12月19日發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」(EDPS Guidelines on assessing the proportionality of measures that limit the fundamental rights to privacy and to the protection of personal data),旨在協助決策者更易於進行隱私友善(privacy-friendly)之決策,評估其所擬議之措施是否符合「歐盟基本權利憲章」(Charter of Fundamental Rights of the European Union)關於隱私權和個人資料之保護。 該指引分為三大部分,首先說明指引的目的與如何使用;第二部分為法律說明,依據歐盟基本權利憲章第8條所保護個人資料的基本權利,並非絕對之權利,得於符合憲章第52條(1)之規定下加以限制,因此涉及處理個人資料的任何擬議措施,應進行比例檢驗;指引的第三部份則具體說明決策者應如何評估擬議措施之必要性和比例性之兩階段檢驗: 必要性檢驗(necessity test) (1) 步驟1:初步對於擬議措施與目的為詳細的事實描述(detailed factual description)。 (2) 步驟2:確定擬議措施是否限制隱私保護或其他權利。 (3) 步驟3:定義擬議措施之目的(objective of the measure),評估其必要性。 (4) 步驟4:特定領域的必要性測試,尤其是該措施應有效(effective)且侵害最小(the least intrusive)。 若前述評估認為符合必要性,則接續比例性檢驗,透過以下4步驟評估: 比例性檢驗(proportionality test) (1) 步驟1:評估目的正當性(legitimacy),擬議措施是否滿足並達到該目的。 (2) 步驟2:擬議措施對隱私和資料保護基本權的範圍、程度與強度(scope, extent and intensity)之影響評估。 (3) 步驟3:繼續進行擬議措施之公平對等評估(fair balance evaluation)。 (4) 步驟4:分析有關擬議措施比例之結果。 科技時代的決策者在立法和政策擬定時,面臨的問題愈趨複雜,需要全面性評估,擬議措施限制應符合歐盟法規,且具必要性並合於比例,隱私保護更是關鍵,參酌該指引搭配EDPS於2017年發布之「必要性工具包」(Necessity Toolkit),將使決策者所做出的決策充分保護基本權利。
韓國擬藉由推動著作權認證制度,解決著作權海外交易難題韓國文化體育觀光部(Ministry of Culture, Sports and Tourism, MCST)為推動著作權認證制度,依其著作權法第56條及施行令第36條第7項規定,指定韓國著作權委員會(Korea Copyright Commission)作為著作權認證業務之負責機關,期達到維護著作權海外交易秩序及提升交易雙方之信賴度之目標。 所謂「著作權認證」,是指任何人欲證明自己為合法享有權利者,可透過具有公信力之第三方機關確認權利關係,並取得認證書後,藉以證明自己是權利人或被授權人。今年係以輸出海外市場(中國等)之音樂、電影、電視劇等內容為第一階段著作權認證對象,並提供免手續費之優惠服務。欲進行著作權認證之申請人(如著作權人、受讓著作權或取得授權之個人或企業等),應提出認證申請書和客觀上可確認其本身擁有權利事實之證明資料(如權利變動或授權相關契約等),向韓國著作權委員會申請,該委員會須於15天內進行審查,確認權利後即發予申請人認證書。 韓國著作權委員會相關人士表示,韓國著作權委員會此次被指定為著作權認證機關之目的,係因韓流文化擴散,帶動韓國內容產業進入國際市場,然針對海外著作權交易,權利歸屬狀態不清楚常成為雙方甚至包括第三方的爭執點,故擬透過推動著作權認證制度,克服外國人利用韓國著作過程中,難以分辨權利人真偽或找不到權利人之困境。透過韓國政府機關確認著作之權利關係所給予具公信力之認證書,確保著作權交易秩序之穩定與信賴。 韓國著作權認證制度目的在於:協助韓國企業得以在海外順利進行著作權交易,以活絡著作權交易流通。反觀我國並無著作權相關認證制度,加上著作權並非採登記對抗主義,為降低海外著作權交易可能衍生之紛爭,未來或可借鏡韓國作法,推動一套符合我國產業環境之著作權認證機制。
紐約市議員向議會提出禁止行動裝置相關業者共享客戶位置資訊的法案紐約市議員Justin Brannan於2019年7月23日向紐約市議會提交一項內容為禁止電信公司和手機應用程式開發商與第三方共享客戶位置資訊(location data)的法案(Int 1632-2019, Prohibition on sharing location data with third parties.)。 該法案原則上,禁止電信公司和手機應用程式開發商與第三方(例如:行銷人員)共享客戶的位置資訊,主要原因在於一般客戶並不清楚自己的位置資訊被共享給第三人,且對於第三人取得其位置資訊後的利用行為存有疑慮。又,位置資訊應屬個人隱私的一部分,故未取得客戶本人同意,即共享其位置資訊無疑是對客戶個人隱私的侵犯。如公司違反法案規定,執法機關對該公司之罰款,以「行為次數」作為計算單位,每次課予1,000美元,惟就同一名受害者,如一天內有數個違法行為,則當天罰款上限為10,000美元。同時,該法案賦予位置資訊被違法共享的當事人,得就其權利被侵害之事實,向法院提訴訟,以為救濟。 不過,該法案並非「絕對」禁止位置資訊的共享,如屬下列情形,例外可共享: 為配合執法機關執行法定職務之所需,如:法律調查等程序,而提供客戶之位置資訊。 為911緊急服務之所需提供,或為免除本人之生命或財產上之急迫危險,提供其位置資訊。 聯邦法律、州法或地方法明文要求應提供。 客戶授權電信公司或手機應用程式開發商得與第三方共享其位置資訊。 這部法案主要目的在於,保障行動裝置使用者的位置資訊,不會在當事人不知情的情形下被提供給第三方。雖然目前該法案尚在審議中,但未來如果通過,紐約市將成為禁止出售個人行動裝置位置資訊的先鋒,同時其執行結果勢必也將成為關注焦點。
世界經濟論壇2020年十大新興科技報告,與健康和環境相關之前瞻科技發展備受矚目世界經濟論壇(World Economic Forum, WEF)於2020年11月10日發表「2020年十大新興科技報告」(Top 10 Emerging Technologies 2020),報告中提出10個近年出現,且被認為在未來5年內最具有正面改變社會潛力的新興科技,並說明除了關注這些科技帶來的改變外,也應關注其引發的風險。 2020年全球最密切關注的議題為健康與氣候變遷,也因此2020年被認為具有發展潛力的新興技術均與這兩個議題有關,包含:(1)無痛注射與測試用的微針技術(Microneedles);(2)太陽能化學(Sun-Powered Chemistry)利用可見光將二氧化碳轉換為普通材料,可作為合成藥物、清潔劑、化學肥料和紡織品的材料;(3)虛擬患者(Virtual Patients),替代人類做人體臨床試驗,比一般試驗更快更安全;(4)空間計算(Spatial Computing)以強化虛擬生活和現實的連結;(5)數位醫療(Digital Medicine)應用程式之發展可以診斷甚至治癒疾病;(6)電動飛航(Electric Aviation)裝置,例如電動推進器可以清除直接碳排放(direct carbon emissions),減少九成的燃料成本、五成維護成本和七成噪音汙染,降低整體航空旅程環境污染並提高效率;(7)低碳水泥(Lower-Carbon Cement)的發展作為氣候變遷下的新興建築材料;(8)量子感測(Quantum Sensing)做為高精準度計算方式,將於未來三到五年進入市場,並首重用於醫療和國防應用產業上;(9)新興零碳能源如綠氫(Green Hydrogen),可補充風力和太陽能;(10)全基因合成(Whole-Genome Synthesis)作為下一代細胞工程(cell engineering)尖端科技,使未來醫學得以治癒更多遺傳疾病。 報告中指出,雖然這些新興技術具有改變社會和產業的潛力,但卻無法確保技術本身是否能被妥善使用(Good is not guaranteed)。首先,這些技術仍需要龐大資金以達到成熟度和可利用的價格點(price point),才能與相關產業達成整合化、規模化。此外面對這些新興科技,決策者必須迅速針對可能引發的風險提出對應策略,例如數位醫療在手機應用程式上會引發政府許可、資料利用、隱私等問題。因此,政策與產業如何協作,使用相關科技、限制濫用並控制技術中風險等,是面對是類新興科技應積極考量的方向。