用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=55&tp=1 (最後瀏覽日:2025/12/27)
引註此篇文章
你可能還會想看
Viacom 對YouTube提出之著作權侵權訴訟已被駁回

  美國法官駁回Viacom公司對Google之影片分享網站YouTube所求償美金10億元之訴訟,這個重要的勝利潛在地強化眾多網路服務提供者所獲得之法律保護。。   此一判決結果並非表示這場爭執3年的法律大戲已結束,因為紐約媒體大亨Viacom立刻承諾對於這判決提起上訴。如最後此一判決是被確認,將可能使得影片創作在現今這數位時代中更難受到保護。   Viacom是在2007年3月對Google提起此一侵權訴訟,內容指出其電影、電視節目及其他內容被廣泛的置於YouTube網站,涉及故意侵權。Google是在2006年10月以16億5千萬買下YouTube,於本訴訟中Google以其符合數位千禧年著作權法(Digital Millennium Copyright Act)之要求,即時取下經權利人所通知後之侵權內容作為抗辯。此案因涉及數位千禧年著作權法中之安全港條款,因而被受關注。   美國紐約南區地方法院法官Stanton於判決中,表示數位內容之著作權保護,非取決於網路服務提供者是否監控其所提供的服務,而在於其於接獲著作權權利人通知後之反應。更進一步表示YouTube已盡其責任,2007年初在接獲Viacom通知其網站約有10萬件受著作權保護影片後,幾乎於接到通知之下一個工作天內便將這些影片取下。並且表示Viacom於本案所提出之法律論點太薄弱。不意外地,Viacom對此不悅的表示:此一判決基本上是有缺點的,並試圖訴諸於美國第二巡迴上訴法院。   然而,Google的法務長Kent Walker表示這是一場重要的勝利,不僅只是對Google也是對全球幾十億利用網路溝通與經驗分享的使用者,並期待將焦點集中在鼓勵毎天於全世界YouTube網站張貼並瀏覽這數量龐大且驚人的想法與創作表達。

黑苺手機製造商RIM對三星提起訴訟

  黑苺手機製造商RIM對三星提起訴訟,針對三星近日來推出商品上的商標,使用像是草莓、珍珠等樣式。RIM在加州巡迴法院提出訴狀,RIM認為只要圖案上含有黑色苺果或黑色珍珠的樣式,就會和RIM的名稱近似。而三星在2006年3月已提出全新的商標申請,但RIM對此提出異議,當時RIM已開始廣告黑苺機,並拒絕接受以三星已註冊的商標使用Verizon Wireless上。   RIM提及其產品黑苺機的黑苺商標對於RIM而言是無價的,黑苺商標使RIM走向持續成功的境界,並擁有有良好的商譽。倘若三星的商品持續以黑色草莓的商標販售,將對RIM的黑苺商標造成商業損害和不可預期的損失,若無法在法律上受到適當賠償,將對RIM造成極大的損失。因此,RIM請求三星銷毀具有black, blue, 或pearl樣式的手機商品。   此案後續發展是值得關切的議題,倘若RIM勝訴,三星要回收所有的手機,此影響甚鉅。

日本於「再興戰略2016」中公布今後醫療等領域徹底ICT化之相關政策

  日本政府於2016年6月2日經內閣議決「再興戰略2016」,為提升國民健康、提高平均壽命,以「世界最先進的健康國家」大篇幅宣布未來政策。其中,在「醫療、長照等領域徹底ICT化」方面之具體新措施如下: (1)醫療等領域中導入ID制度   日本厚生勞動省於2015年11月18日召開第10次「醫療等領域利用識別號碼制度之研究會」(医療等分野における番号制度の活用等に関する研究会),並於次月公布相關研究報告書,其內容包含導入「醫療保險線上資格審查」以及「醫療ID制度」,上述制度預計自2018年開始階段性運用,並於2020年正式實施,因此,本年度工作目標設定為,著手勾勒具體之應用系統機制,並針對實務面相關議題進行討論,自明年開始落實系統開發,整體而言,日本現階段最重要的目標就是促使醫療領域徹底數位化及標準化。 (2)透過巨量資料之利用,增進相關領域之創新   「次世代醫療ICT基礎設施協議會」(次世代医療ICT基盤協議会策定)將延續2016年3月由其所策定之「醫療領域資料利用計畫」(「医療等分野データ利活用プログラム」,意即加強各資料庫(例如醫療資訊資料庫MID-NET)之交流並擴大相關應用。   此外,在現行法規範下,為達成促進醫療領域資訊利用、醫藥相關研發之目標,應成立「代理機關(暫稱)」,以便於擴大收集醫療、檢驗等數據資料,並妥善管理與去識別化,日本政府於「再興戰略2016」中將此機關之設置列為次世代醫療ICT基礎設施協議會之重要工作項目,期望透過協議會對相關制度之討論,能在明年訂定出具體的法律措施。 (3)個人醫療和健康資訊之綜合利用   日本政府期望透過不同終端設備收集關於醫療、健康等資料,並鼓勵民間依此開發新市場,但在此之前,政府必須先行建構一個能良性發展的環境。首先,為實現針對個人需求量身打造的「個別化健康服務」,保險業者、握有病歷的機構、健檢中心及可穿戴式終端設備等,得經當事人同意後收集、分析其日常健康資訊,該「個別化健康服務」之實證計畫將於本年度啟動,由地區中小企業開始。   為強化醫療保險業者去整合運用相關資源並應用於預防、健康醫學上,政府機關應訂定一些獎勵措施,鼓勵業者將ICT技術活用於預防、健康醫學領域上。   此外,今年度「次世代醫療ICT基礎設施協議會」還有一項重要的工作項目,即建立可記錄患者所有就醫過程資訊之系統(Peronal Health Recaord,簡稱PHR),讓相關醫療資料得以流通運用。同時,日本政府希望能在2018年達成「地區性醫療情報聯結網路」,並普及到全國各地,這麼做的目的在於,過往因為醫療資訊不流通,以及重症照護上的斷層,使身心障礙者往往難以離開長期利用的醫療環境,新政策希望讓這些患者無論遷居何處,在全國各地皆能安心接受醫療服務,而不受限於地區限制。

英國通訊傳播管理局發表「開放通訊:使人們能夠透過創新服務共享資料」,提供通訊業者建立開放通訊(Open Communications)之原則建議

  英國通訊傳播管理局(The Office of Communications, Ofcom)於2020年8月發布「開放通訊:使人們能夠透過創新服務共享資料」(Open Communications: Enabling people to share data with innovative services),針對開放通訊的設計原理提出七點建議: 應盡可能讓符合條件的第三方能夠近用(access)資料,同時確保用戶受到保護。 應提供客戶一些目前無法取得的資料,例如有關網路服務品質的體驗報告,以提供使用者做為未來交易時之參考。 資料的提供商和第三方必須確保資料儲存和傳輸的安全性。 第三方將如何使用有關客戶的資料及是否含有潛在風險等,皆應清楚透明地告知使用者,並且讓共享資料之使用者仍保有控制權限。 開放通訊服務之設計應符合包容性設計(inclusive design),提高使用者使用意願。 開放通訊仍應維持市場競爭。 提供資料所需的成本應與資料開放的潛在收益成比例。原則上,參與開放通訊的通訊提供者越多,對個人和小型企業的整體價值就越高。惟,若是強制要求用戶數少或是無法承擔該技術的小型提供商加入,可能導致成本與收益不成比例。   除此之外,對於應開放何種資料則須循序漸進。除了增加對第三方客戶資料近用權限之外,首先,應針對開放對資料提供者風險低,但對潛在用戶有較高利益的資料,例如:不包含個人訊息的資料,從而降低匿名化過程中所產生之風險;第二,開放低風險的地理空間資料(geospatial data),目的在於改善該地區的整體地理空間資料基礎架構。最後才是開放有關各種通訊產品中的其他資料,以促進消費者的選擇和保護。   綜上所述,考慮到開放通訊之可行性,需進一步與其他資料可攜性計劃的主要代表進行會談(如銀行業者),尋求各行業主要服務提供商的支持。再者,考慮是否訂定相關法律以及如何進行監管。第三,應標準化客戶資料,以及確保資料移動之安全性及用戶控制權限,最後則是降低資料開放之成本,以達成開放通訊所帶來之效益。

TOP