用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=55&tp=1 (最後瀏覽日:2025/11/11)
引註此篇文章
你可能還會想看
歐盟有條件批准Meta對Kustomer的併購案

  歐盟執委會於2022年1月27日宣布批准Meta(原Facebook)對Kustomer的併購案。Kustomer公司本身為向企業銷售客戶關係管理(customer relation management, CRM)整合軟體之公司,故本項併購可能影響Meta對消費者資訊的掌握能力,進而提升廣告市場影響力。因之,歐盟執委會基於自去(2021)年8月起深入調查本併購案有無影響公平競爭的結果,作成批准本併購案之決定,但要求Meta應遵守其提出的條件。   依據歐盟執委會的調查結果,主要擔憂本併購案可能阻礙CRM整合軟體之供給市場、以及CRM整合軟體售後客戶服務之供給市場的公平競爭。同時,調查中亦確認到Meta限制Kustomer公司的潛在競爭對手、以及新參與上述市場的業者近用Meta的訊息傳遞路徑應用程式介面(message channel API)。上述潛在競爭對手與業者和Kustomer公司相同,以中小企業為其主要銷售客群。而Meta採取此種經營方式,則可能會劇烈減少CRM整合軟體供給市場、以及CRM整合軟體售後客戶服務供給市場的競爭,導致相關軟體產品或服務的價格上揚,並伴隨品質與創新能量的下降,更可能將之轉嫁予消費者。   對上述調查結果所提出違反公平競爭秩序的疑慮,Meta則提案追加以下約款,作為條件以圖本併購案能夠獲准:(1)Meta保證於10年內,將其訊息傳遞路徑應用程式介面以無償、非歧視的方式,公開予存在競爭關係之客戶服務CRM整合軟體供應商、與新參與市場的業者取用;(2)Kustomer公司之客戶所使用Messenger、Instagram之私人通訊服務,以及WhatsApp之功能未來有進行改良或更新時,Kustomer公司之競爭對手與新進業者同樣得使用該些更新的功能。歐盟執委會最終認為Meta若踐行上述約款,將能消除其違反公平競爭秩序的疑慮,而以Meta履行該些約款為條件批准本併購案。

歐洲議會通過《關鍵原物料法案》強化供應鏈韌性及提升戰略自主權

歐盟執委會(European Commission)於2023年3月16日提出《確立關鍵原物料安全及永續供應框架規則草案》(Proposal for a regulation of establishing a framework for ensuring a secure and sustainable supply of critical raw materials,以下簡稱關鍵原物料法案),歐盟理事會和歐洲議會於2023年11月13日就草案內容達成政治協議,歐洲議會於2023年12月12日通過草案,有望於2024年完成立法。 《關鍵原物料法案》設有「關鍵原物料清單」(List of critical raw materials)和「戰略性原物料清單」(List of strategic raw materials),前者包含34種對歐盟經濟至關重要之關鍵原物料,而其中17種關鍵原物料又因具戰略重要性且預期將有全球供需失衡問題,而被劃分至「戰略性原物料清單」。為確保上述關鍵原物料之永續供應,《關鍵原物料法案》採取以下措施: (1)強化歐盟關鍵原物料價值鏈,制定2030年戰略性原物料基準:於2030年前,每年消費之戰略性原物料,至少10%於歐盟境內開採、40%於歐盟境內加工製造、25%於歐盟境內回收再利用。 (2)確保戰略性原物料供應多元化:未來加工階段使用之戰略性原物料,來自單一第三方國家之比例,不得超過總需求量65%。 (3)強化供應鏈韌性:提高歐盟監控和減輕關鍵原物料供應鏈風險之能力。 (4)關鍵原物料循環利用:確保關鍵原物料和含有關鍵原物料的產品在歐盟市場內能自由流通,並透過提高循環性和永續性,落實高水準環境保護政策。 歐盟期望透過上開目標之落實,並配合法案中之簡化開採許可程序及優惠融資管道等經濟鼓勵措施,促進關鍵原物料研發及供應鏈多元化,以落實綠色和數位轉型,並提升歐盟及其會員國之戰略自主權(strategic autonomy)。

「巨量資料應用」

  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。   在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

OTT影音發展與著作權-以英國為例

TOP