用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業中的醫療資訊科技列為重點發展項目之ㄧ。以國內全面採行「電子病歷健康記錄」(electronic health records, EHRs)系統為目標,共挹注190億美元的經費,透過聯邦醫療保險或醫療補助計畫的機制支付獎勵金,鼓勵醫師或醫療院所採購並建置院內的電子醫療資訊系統。自2011年至2015年,醫師或醫療院所符合實質EHR使用者(meaningful EHR user)的標準,至多可獲得44000美元的獎勵金;倘於2015年後,其尚未成為實質EHR使用者,則將以每年多1%的比例,逐年減少其醫療保險補助額,直至2019年將減少5%。為了施行此政策,ARRA規定主管機關須於2009年12月31日前確立EHR的標準,包含了相互運用性(interoperability)、臨床功能性(clinical functionality)及安全性等標準。 EHR系統的基礎,也就是電子醫囑(e-prescribing)所涵蓋的功能,能提供臨床及藥費的即時資訊,供醫師判斷何種藥物(包含學名藥)最為安全,且可符合病患經濟負擔;亦可顯示該病患用藥紀錄,及其他醫生曾開立的處方,供醫師比對並觀察病患潛在的藥物過敏現象,若系統偵測出藥物間相斥的情形,亦將自動發出安全警示。此外,以電腦輸入處方並自動傳送至領藥處的模式,不僅可省卻病患冗長的等候領藥時間,亦能減少藥劑師因難以判讀字跡所導致的配藥錯誤。 一項由美國藥物照顧管理協會(Pharmaceutical Care Management Association, PCMA)所贊助的調查研究指出,ARRA中的病歷健康資訊科技化措施,將使e-prescribing的運用率,在未來五年內增加75%;而在往後10年,此將減少約3500萬筆的用藥指示錯誤,消弭因服藥錯誤導致的死亡事件,並能節省220億的用藥支出;其所帶來的效益實遠超過政府所挹注的經費。
日本修訂大學與研究機關敏感技術出口管理指引,因應外為法相關行政命令修正擴大出口行為之認定範圍日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。 經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。
美國普及服務再革新—由醫療照護服務主導的寬頻佈建計畫從2006年開始,FCC所推出的「偏遠地區醫療照護領航計畫」 (Rural Health Care Pilot Programs),扶植其國內50個不同的醫療照護寬頻網路。此計畫不僅強化了美國對於遠距醫療照護技術的需求,更被寄望發展成為一高效能之寬頻服務。而計畫中「聯盟」 (consortium-focused)的概念,更促進了城鄉醫療團隊的合作(rural-urban collaboration)。除了減低申請普及服務補助時所需花費之行政成本外,更提升了醫療業者購買所需頻寬時的議價地位。 不過美國政府並不以此為滿足,為進一步改善整體計畫的實施效益, FCC於2012年12月再次針對醫療照護普及服務進行新階段的革新,並提出「醫療照護網路基金」 (Healthcare Connect Fund),以取代原有之領航計畫(Pilot Program)。「醫療照護網路基金」規劃的目的,在於提供計畫參與者更多的彈性,以規劃其本身的網路。業者可透過購買所需之寬頻服務、自行佈建寬頻基礎建設或混合上述兩種方式,取得所需之頻寬。不過FCC亦訂定資格限制以及審查機制。目前僅有具備一定經濟規模的醫療聯盟,可自行佈建寬頻基礎建設,獨立醫療業者並不具佈建之資格。另外,FCC亦要求醫療業者須提出詳細證明,以供主管機關審查。審查文件中需證實所得頻寬資源,是透過公正的招標機制後,所採行最具成本效益之決定。 普及服務的延伸就如同規劃渠道,將水源引向一片匱乏與困境的孤島。美國在面對偏遠地區醫療資源的匱乏,以及該地醫療業者的困境時,運用寬頻網路來傳遞病患所需的服務,也透過城鄉醫療業者的結盟,讓城市醫療團隊所發展的技術,得以與偏遠地區藉提供服務後所得的實證資料,透過網路互通流通,甚至允許醫療業者佈建基礎寬頻建設,以提供更完善的服務。普及服務的概念,不應該偏離電信基礎建設的佈建,但更上一層樓的是以滿足人民基礎生存權利之必須所主導的概念。
簡析歐盟「能源效率指令」-- 以建築能源效率為核心