用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國加州北區聯邦地方法院,於去年(2017年)12月5日做出關於雇員刪除其由公司提供電腦中與公務無關資料是否屬電腦犯罪之判決(United States v. Zeng, 4:16-cr-00172(District Court, N.D. California. 2017).)。 該案情為曾(Zeng)氏為避免其竊取自家公司商業機密行為被揭發,而逕自刪除其在公司提供筆記型電腦內之相關資料。而嗣後仍然被公司發現並報案,於此偵查單位FBI則以曾氏違反電腦詐欺及濫用法案(Computer Fraud and Abuse Act,下稱CFAA)中「未經授權而毀損他人電腦(18 U.S.C. § 1030(1984).).」以美國政府名義(下稱控方)起訴曾氏刪除其犯罪證據之行為。 對於該控訴,被告曾氏以被刪除之電子紀錄與其業務無關,非為公司所有財產為由作為抗辯。此外曾氏同時以其他判決主張毀損電腦之定義應係指由外部傳輸行為所致(如駭客行為),電腦使用者自己刪除行為應不包含之,以及控方未舉證其刪除行為將導致公司有不可回復或無法替代之損害作為抗辯。於此,控方則以刪除行為不應以內容而有所區分作為回應。 在審理期間,承審法官多納托(Donato)氏除參酌控辯雙方證詞外,並特別詢問控方律師指控內容是否會對一般大眾造成其在公用電腦中刪除同類資訊上之顧慮。而控方則以曾氏行為屬特殊情況作為答辯。最後,多納托氏則以控方主張將造成社會恐慌以及控方未提出被告刪除資料行為究竟對公司有何實際損害,判決被告無罪。
歐盟公布資料保護相關指令適用意見書由歐盟二十七個會員國資料保護主管機關組成的第二十九條資料保護工作小組(The Article 29 Working Party)最近公布其應適用何國資料保護法規之意見書。 歐盟資料保護指令(EU Data Protection Directive)第四條對於蒐集或處理個人資料所應適用之法規有所規範,依該條規定,機構必須依其成立之國別適用該國資料保護法規;機構若於其他國家裝置設備處理資料,則須遵守設備所在地之法令。 隨著全球化的趨勢與新興科技的發展,目前處理資料機構之運作方式已與當初制定指令時有所不同,許多機構在世界各國設置營運點,向全球各地提供各類型服務,尤其是網際網路的發展,使得遠端服務及在虛擬環境下分享個人資訊更為容易,但同時也增加辨識資料處理所在地之困難度,因此工作小組提出該意見書,希望藉此釐清資料保護指令第四條之適用。 工作小組於該意見書中指出,資料保護指令所指的應適用法規,並非資料控制者(data controller)所在地之法規,而是附屬於該資料控制者並實質進行資料處理之機構的所在地法規。蓋因同一資料控制者可能在數國成立附屬機構,在此種狀況下判別適用法規的標準,應視實際上相關資料處理活動的發生地,亦即處理資料機構所在地。 而針對處理個人資料所使用之設備,工作小組表示,即使處理資料之機構並未擁有設備,而使用該設備處理個人資料時,亦可適用指令第四條之規定,需遵守設備所在地之相關法規;但工作小組同時特別釐清,以電信電纜或郵政服務等方式傳輸資料並不會落入資料保護法規之範疇。
日本立法保護及促進重要經濟安全資訊之利用日本國會2024年5月10日通過、同月17日公布《重要經濟安全資訊保護及活用法》(重要経済安保情報の保護及び活用に関する法律,以下簡稱經安資訊保護法),建立安全許可(セキュリティ・クリアランス)制度,規範政府指定重要經濟安全資訊(以下簡稱經安資訊)、向業者提供經安資訊之方式,以及可近用經安資訊之人員資格等事項,以保護與重要經濟基礎設施有關,外流可能影響國家及國民安全之重要資訊,並同時促進此類資訊之利用。 根據經安資訊保護法規定,行政機關首長得指定機關業務相關之重要資訊,如與關鍵基礎設施、關鍵原物料相關,外洩可能影響經濟安全之資訊為經安資訊。並得於下列情形,向其他行政機關、立法機關及司法機關、特定民間業者提供經安資訊: 1.其他行政機關:有利用經安資訊之必要時。 2.立法機關及司法機關:提供資訊對經濟安全不會有顯著影響時。 3.特定民間業者:為促進有助於經濟安全保障之行為,必要時得依契約向符合保安基準之業者提供經安資訊。 此外,經安資訊保護法進一步規定近用、處理經安資訊者,須通過適格性評價(適性評価),評價重點包括當事人犯罪紀錄、藥物濫用紀錄、有無精神疾病、有無酗酒、信用狀況等。由於上述內容涉及當事人隱私,故行政機關進行適格性評價前,須取得當事人同意。
美國FDA計畫舉辦3D列印技術於醫療運用下之法制探討會議隨著3D印表機的價格日趨親民、3D列印設計檔案於網際網路交流越趨頻繁,以及預期3D列印技術在未來的應用會更加精進與複雜化,3D列印技術於醫療器材製造面所帶來的影響,已經逐漸引起美國食品藥物管理局(FDA)的關注。 在近期FDA Voice Blog posting中,FDA注意到使用3D列印所製造出的醫療器材已經使用於FDA所批准的臨床干預行為(FDA-cleared clinical interventions),並預料未來將會有更多3D列印醫療器材投入;同時,FDA科學及工程實驗辦公室(FDA’s Office of Science and Engineering Laboratories)也對於3D列印技術就醫療器材製造所帶來的影響進行調查,且CDRH功能表現與器材使用實驗室(CDRH’s Functional Performance and Device Use Laboratory)也正開發與採用電腦模組化方法來評估小規模設計變更於醫療器材使用安全性所帶來的影響。此外,固體力學實驗室(Laboratory of Solid Mechanics)也正著手研究3D列印素材於列印過程中對於醫療器材耐久性與堅固性所帶來的影響。 對於3D列印就醫療器材製造所帶來的法制面挑戰,在Focus noted in August 2013中,其論及的問題包含:藉由3D列印所製造的醫療器材,由於其未經由品質檢證是否不應將其視為是醫療器材?3D列印醫療器材是否需於FDA註冊登記?於網路分享的3D列印設計檔案,由於未事先做出醫療器材風險與效益分析,FDA是否應將其視為是未授權推廣等問題。 針對3D列印於醫療器材製造所帶來的影響,CDRH預計近期推出相關的管理指引,然FDA認為在該管理指引推出前,必須先行召開公聽會來援引公眾意見作為該管理指引的建議參考。而就該公聽會所討論的議題,主要依列印前、列印中與列印後區分三階段不同議題。列印前議題討論包含但不限於材料化學、物理特性、可回收性、部分重製性與過程有效性等;列印中議題討論包含但不限於列印過程特性、軟體使用、後製程序與額外加工等;列印後議題討論則包含但不限於清潔/多餘材料去除、消毒與生物相容性複雜度影響、最終裝置力學測定與檢證等議題。