美國白宮發布《晶片與科學法》實施一周年總結

美國白宮(The White House,以下簡稱白宮)於2023年8月9日發布《晶片與科學法》(CHIPS and Science Act,以下簡稱晶片法)頒布一周年之總結,說明相關補助及租稅優惠措施之實施成效。自晶片法施行以來,已吸引高達1,660億美元之私人投資,並有50所以上大學宣布將開設半導體人力培訓課程,顯示晶片法對半導體生產製造在地化已有相當成效。晶片法施行後推動之措施如下:

1.說明半導體補助申請流程及條件
美國國家標準及技術研究院(National Institute of Standards and Technology)於2023年2月28日分別發布「半導體製造補助之申請指引」(Funding Opportunit–Commercial Fabrication Facilities)與「半導體製造補助願景」(Vision for Success: Commercial Fabrication Facilities),說明晶片法補助目的、申請流程、條件以及注意事項,並於同年6月23日更新相關內容。

2.說明柵欄條款之運作方式
美國商務部(Department of Commerce)與財政部(Department of Treasury)2023年3月23日於美國聯邦公報(Federal Register)發布法規預告(proposed rules),詳細說明晶片法內柵欄條款(guardrails)之運作方式。根據法規預告之內容,受補助人於受補助後的10年內若未經美國商務部與財政部同意,不得於中國等特定國家進行半導體製造設施「實質擴廠」之「重大交易」,避免受補助人將晶片法提供之補助用於中國,進而侵害美國國家安全。

3.強化半導體研發創新
美國商務部於2022年9月6日發布「美國晶片補助戰略」(A Strategy for the CHIPS for America Fund),說明商務部將與國家科學基金會(National Science Foundation)等建立「國家半導體科技中心與執行國家先進封裝製造計畫」(National Advanced Packaging Manufacturing Program),協助美國維持半導體研發之領先地位,並大幅縮短研發成果商用化之時程。

4.保障區域經濟發展與創新
美國商務部於2023年5月發布第1期「科技中心計畫」(Tech Hubs Program)申請指引,協助區域製造、商業化和部署關鍵技術;並於2023年6月發布第1期「重新競爭領航計畫」(Recompete Pilot Porgram),為長期處於經濟困境的美國社區提供就業機會。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國白宮發布《晶片與科學法》實施一周年總結, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9052&no=55&tp=1 (最後瀏覽日:2025/11/15)
引註此篇文章
你可能還會想看
歐盟執委會發布2020歐洲創新計分板報告

  歐盟執委會(European Commission, EC)於2020年6月23日發布2020歐洲創新計分板報告(European Innovation Scoreboard 2020, EIS),其以「整體結構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大指標評比歐盟成員國以及其他歐洲國家的研究與創新績效、創新環境等;各指標下再細分為10個次標和27個子標,例如人力資源、友善創新環境建構、政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。   歐洲計分板將歐盟會員國創新表現分為四組,以2020年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含丹麥、芬蘭、荷蘭、瑞典等國,為創新表現大於歐盟成員國平均創新度20%以上者;(2)優秀創新者(Strong Innovators):包含奧地利、比利時、法國、德國、葡萄牙等,創新表現大於歐盟成員國平均者;(3)中等創新者(Moderate Innovators):包含希臘、匈牙利、義大利、西班牙、波蘭等國,其創新表現小於歐盟平均者;以及最後一組(4)適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞,為創新表現低於歐盟平均之50%。   此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在創新研究體系領域,表現最好者為盧森堡、丹麥、荷蘭;中小企業帶領創新則以葡萄牙和芬蘭表現最佳;創新協力合作(Innovation linkages and collaboration)以奧地利、比利時、芬蘭最佳。而在全球綜合創新表現上,南韓為創新表現最佳,其向加入專利合作條約(Patent Cooperation Treaty, PCT)國家提交之專利申請數、商標申請數、設計專利申請數量最多,分別為世界其他先進國家的2-10倍不等(申請數量以每十億GDP為一單位計算);其次是加拿大、澳洲、日本、歐盟、美國與中國。歐盟已是第二年超越美國,並在其他主要競爭者中(美國、中國、巴西、俄羅斯、南非等)保持優先,唯優勢差距開始減少。此外,EIS跨年度分析評比,是以歐盟2012年創新表現為基準。報告中將歐盟2012年之創新表現預設為100,在2012-2019年間,中國的創新表現評分自79成長至97,而美國則在93-99間穩定變動;特別是2019和2020兩年,美國創新表現均維持在99,而無顯著之進步。故報告預測若依此趨勢,中國創新表現將在近年超越美國。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

德國提出「對外貿易條例」修正草案

  德國聯邦經濟與能源部(Bundesministerium für Wirtschaft und Energie,BMWi)在2017年7月提出「對外貿易條例」(Außenwirtschaftsverordnung)修正草案,以規定基於德國的公共政策安全或基本安全利益,對於外國人(或企業)收購國內公司,在必要時得予以禁止或增加強制條件。   如果交易完成後(一)歐盟之外的收購方將直接或間接持有目標公司25%以上的表決權以及(二)出於公共秩序或安全原因有必要採取上述措施,聯邦經濟與能源部可禁止對德國公司的收購交易。   該法修正草案亦進一步規定,聯邦經濟能源部將在本法律框架下對於涉及以下(技術)領域相關企業併購案之合約談判的各方進行審查程序,以確保國家實質安全利益: 部分能源電力領域,例如:電廠控制技術、電網工程技術、電廠系統或系統操作的控制技術(供電、供氣、燃油或集中供熱等)。 部分用水領域,例如:用水控制、調配或自動化技術(飲用水供應或污水處理設施)。 訊息技術和電信軟體領域,例如:語音和數據傳輸、數據儲存系統及處理系統)。 金融和保險部門、其運營的軟體或現金系統。 涉及醫療保健軟體部門或醫院管理訊息系統、處方藥和實驗室訊息系統的運行等領域部分。 涉及運輸和交通領域內的控制系統、工廠或設施的運行、航空運輸、乘客和貨物系統、鐵路運輸、海運和內河運輸、公路運輸、公共交通或後勤物流等領域。

美國FTC警告科技公司,不應迫於外國勢力而削弱對消費者之隱私與資料安全保障

美國聯邦貿易委員會(Federal Trade Commission)主席Andrew N. Ferguson於2025年8月21日發信給13家科技公司,其中包含Alphabet、Amazon、Apple、Microsoft、Meta、X等國際知名科技公司,警告他們有義務保護美國消費者隱私與資料安全,若在外國政府施壓下審查美國公民的資料,將有違反《聯邦貿易委員會法》(Federal Trade Commission Act, FTC Act)之虞。 信中指出,科技公司可能為遵循外國法規或迫於外國政府壓力,削弱對美國公民的隱私及資料安全保護。如歐盟《數位服務法》(Digital Services Act)、英國《網路安全法》(Online Safety Act)期望科技公司審查用戶言論內容;而英國《調查權力法》(Investigatory Powers Act)則為滿足英國政府取得用戶儲存資料之目的,要求科技公司削弱原本對用戶採行之點對點加密措施。Ferguson主席更表示:「外國勢力審查及削弱加密措施等行動,將侵害美國公民的自由或使美國公民遭受各種危害,例如受外國政府監視、增加身分盜用與詐騙風險」。 信中亦提及,科技公司在遵守外國法律及相關要求的同時,仍須遵守FTC Act第5條規定,亦即禁止企業在市場中進行不公平或欺騙性行為的規定。同時也表示,過去20年來,FTC已對未能履行消費者資料安全或隱私承諾之公司提起數十起訴訟,並將持續要求蒐集、使用、分享或傳輸消費者個人資料的公司,應採取合理的安全措施,藉此確保消費者權益。

TOP