近期由於營業秘密議題受到重視,引起廣泛討論,美國實務界律師於彭博社法律專欄(Bloomberg Law Practical Guidance)指出生命科學領域的企業不應僅尋求專利的保護,而應考慮透過營業秘密來保護其部分創新,比如:製造技術、分析工具及方法、配方等,並指出保護營業秘密所應採取的具體措施。
在Mayo Collaborative Servs. v. Prometheus Labs一案中,美國最高法院認為診斷方法並非真正的應用,因此不符合可取得專利的資格;在Ass'n for Molecular Pathology v. Myriad Genetics一案中,美國最高法院認為將天然基因分離的技術不符合可取得專利的資格。由上述判決可以發現,生命科學領域的公司能取得專利的範圍被限縮了,因此該領域的企業應考慮透過營業秘密來保護其創新。
營業秘密相對於專利的優勢在於,專利有保護期限,但營業秘密若未公開揭露則能持續受到保護。另外,根據美國專利法(Patent Act),專利保護之客體限於有用且新穎的發明,但營業秘密保護之客體不僅限於此。不過,以營業秘密保護創新同樣存在風險,比如可能面臨前員工、現任員工將其洩露或是由於合作案導致其被竊取的情況等。
為避免上述情況之發生,企業應採取下列措施,包括:
1. 要求員工簽署保密協議,並於協議中具體說明營業秘密之範圍、保密期限,同時確保員工離職時歸還與營業秘密有關的資訊及設備;
2. 將涉及營業秘密的文件標示為機密;
3. 將機密文件及檔案儲存於上鎖的櫃子或受密碼保護的電腦中;
4. 根據員工的職責,僅允許必要的員工存取營業秘密資訊;
5. 對員工進行教育訓練,使其了解哪些資訊被視為營業秘密而不應洩露;
6. 透過監視設備監控保存營業秘密的位置;
7. 與合作單位簽署合作協議時,確保協議中有明確規定哪些資訊被視為營業秘密、分享營業秘密的方式、保密期限、授權的範圍等。
綜上所述,由於可取得專利的範圍被限縮,生命科學領域的企業應考慮透過營業秘密來保護其部分創新。在以營業秘密保護其創新時,應確保有採取與員工簽署保密協議、識別機密、權限控管、教育訓練、與合作單位簽署合作協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
中華人民共和國第12屆全國人民代表大會常務委員會第18次會議於2015年12月27日通過並公布《中華人民共和國反恐怖主義法》(以下簡稱反恐法),並自2016年1月1日開始施行。反恐法第18條與第19條要求電信業務經營者與互聯網服務提供者,應當為公安機關、國家安全機關依法進行防範、調查恐怖活動「提供技術接口和解密等技術支持和協助」,並應當依照法律與行政法規規定,「落實網絡安全、信息內容監督制度和安全技術防範措施,防止含有恐怖主義、極端主義內容的信息傳播;發現含有恐怖主義、極端主義內容的信息的,應當立即停止傳輸,保存相關記錄,刪除相關信息,並向公安機關或者有關部門報告。」倘有違反以上規定且情節嚴重者,反恐法第84條授權由主管部門對該公私處50萬人民幣以上罰款,並對該公司直接負責之主管人員與其他直接責任人員處10萬元人民幣以上50萬人民幣以下罰款,並可由公安機關對該等人員處5日以上15日以下之拘留。 我國刻正進行資通安全管理法之制定,以為範圍更廣之資訊基本法的作用法。資通安全管理法當中考量納入與關鍵基礎建設相關之民間產業,使之成為資安通報之一環,政府需要民間企業配合時也將於法有據。於恐怖攻擊事件頻傳之今日,倘我國需要就此等事件要求電信業者或服務提供者進行通報時,相關國際立法例及其實踐,即值參酌。
美國聯邦最高法院判決維持Brulotte原則2015年6月美國聯邦最高法院大法官以6比3的同意比例判決維持該法院於1964年所確立之Brulotte原則,即專利失效後禁止要求償付授權金之原則。聯邦最高法院重新檢討Brulotte原則之爭議係起源於Kimble et al. v. Marvel Enterprises Inc.(case num. 13-720)一案。該案中涉及到現實下專利權利人於面對財團時,是否能於專利權有效期間採取手段充分保護專利權之問題,故是否有必要放寬專利權於失效後,專利權人仍得以專利授權契約要求專利被授權人償付授權金。又本案原告知專利發明人Kimble主張放寬Brulotte原則亦有亦於刺激競爭,促進研發創新。 然而,主撰判決本文之美國卡根大法官(Justice Kagan)及贊同維持Brulotte原則之大法官認為,Brulotte原則屬於聯邦最高法院遵照執行之決議事項(stare decisis),必須具有超級特別的理由(superspecial justification)才足以立論推翻該原則。但大法官認為並無有該類理由,並且強調縱然放寬Brulotte原則在學理上證實有助於市場競爭,但這也並非聯邦最高法院在司法權限所應審查或判斷之事項,而應是美國國會於智財政策之取捨。 反對維持Brulotte原則之阿利托大法官(Justice Alito)、羅伯特首席大法官(Chief Justice Roberts)及湯瑪斯大法官(Justice Thomas)提出不同意見書。反對意見認為專利失效及失去任何專有權利,所以涉及授權金之唯一問題即在於最佳契約設計(optimal contract design)。Brulotte原則干預了各方協議授權內容時,可以反映專利真實價值的方式,破壞契約期望(contractual expectation)。 本案作成判決後,各專利事務所及專利律師普遍贊同聯邦法院維持Brulotte原則,主要係基於該原則可以使用來償付授權金之資金轉為用於他處,有助於資金流通,而非用於已失效之專利。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).
日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。 SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。 研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。