生命科學領域的企業應透過營業秘密保護其部分創新

近期由於營業秘密議題受到重視,引起廣泛討論,美國實務界律師於彭博社法律專欄(Bloomberg Law Practical Guidance)指出生命科學領域的企業不應僅尋求專利的保護,而應考慮透過營業秘密來保護其部分創新,比如:製造技術、分析工具及方法、配方等,並指出保護營業秘密所應採取的具體措施。

在Mayo Collaborative Servs. v. Prometheus Labs一案中,美國最高法院認為診斷方法並非真正的應用,因此不符合可取得專利的資格;在Ass'n for Molecular Pathology v. Myriad Genetics一案中,美國最高法院認為將天然基因分離的技術不符合可取得專利的資格。由上述判決可以發現,生命科學領域的公司能取得專利的範圍被限縮了,因此該領域的企業應考慮透過營業秘密來保護其創新。

營業秘密相對於專利的優勢在於,專利有保護期限,但營業秘密若未公開揭露則能持續受到保護。另外,根據美國專利法(Patent Act),專利保護之客體限於有用且新穎的發明,但營業秘密保護之客體不僅限於此。不過,以營業秘密保護創新同樣存在風險,比如可能面臨前員工、現任員工將其洩露或是由於合作案導致其被竊取的情況等。

為避免上述情況之發生,企業應採取下列措施,包括:
1. 要求員工簽署保密協議,並於協議中具體說明營業秘密之範圍、保密期限,同時確保員工離職時歸還與營業秘密有關的資訊及設備;
2. 將涉及營業秘密的文件標示為機密;
3. 將機密文件及檔案儲存於上鎖的櫃子或受密碼保護的電腦中;
4. 根據員工的職責,僅允許必要的員工存取營業秘密資訊;
5. 對員工進行教育訓練,使其了解哪些資訊被視為營業秘密而不應洩露;
6. 透過監視設備監控保存營業秘密的位置;
7. 與合作單位簽署合作協議時,確保協議中有明確規定哪些資訊被視為營業秘密、分享營業秘密的方式、保密期限、授權的範圍等。

綜上所述,由於可取得專利的範圍被限縮,生命科學領域的企業應考慮透過營業秘密來保護其部分創新。在以營業秘密保護其創新時,應確保有採取與員工簽署保密協議、識別機密、權限控管、教育訓練、與合作單位簽署合作協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 生命科學領域的企業應透過營業秘密保護其部分創新, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9066&no=64&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
日本制定綠色轉型基本方針草案,規劃未來10年政策藍圖

  在美中對抗、烏俄戰爭等地緣政治背景下,世界各國開始重視供應鏈穩定問題。日本在過去幾次供應危機中,逐漸從以化石能源為中心之產業結構,轉向以綠能為主之產業結構,為讓自身能最大限度地利用脫碳相關技術,並在維持能源穩定供應的同時,強化日本產業競爭力,日本經濟產業省於2022年12月23日公布「實現綠色轉型基本方針(草案)」(GX実現に向けた基本方針),提出未來10年政策藍圖,目前正於全國各地辦理意見交流會,徵集民眾意見。   根據上述方針草案,日本未來將採取之措施包括:(1)透過《能源使用合理化法》(エネルギーの使用の合理化に関する法律)徹底推動節能、製造業結構轉型為碳循環型生產體制,並導入蓄電池和控制系統;(2)再生能源成為主力電源,2030年再生能源占比達到36-38%;(3)2030年核能占比達到20-22%;(4)導入氫能、尿素等新能源,於2025年大阪萬博將進行實驗,並參酌外國實際案例,以安全為前提,制定合理之氫能安全戰略及國際標準;(5)整備電力及瓦斯市場,以確保供應穩定;(6)強化資源外交及國際合作,避免因依賴外國資源而產生斷鏈危機;(7)推動蓄電池產業;(8)促進資源循環;(9)運輸部門綠色轉型,包括下一世代汽車、飛機、船舶、鐵路、人物流等;(10)以脫碳為目的之數位投資;(11)住宅、建築物節能;(12)基礎設施投資;(13)碳捕捉技術;(14)食材、農林水產業轉型等。   除上述措施外,日本亦將運用綠色經濟轉型債券(暫定)及各種金融手段,支援綠色轉型前期投資。相關法案預計於下次國會提出,並於兩年內檢討具體措施。

南韓預告修訂《個人資料保護法施行令》草案,擬擴大本人資料傳輸請求權適用範圍

2025年6月23日,韓國個人資料保護委員會(개인정보보호위원회,下簡稱個資會)宣布修訂《個人資料保護法施行令》(개인정보 보호법 시행령)草案,擴大「本人傳輸請求權」(본인전송요구권)制度的適用範圍至特定大型個人資料處理者(개인정보처리자)。 南韓政府於2024年3月開始實施MyData(마이데이터)制度,賦予其國民「本人傳輸請求權」。所謂「本人傳輸請求權」,係指當事人向資料持有者請求傳輸個人資料給自己或特定第三方的權利,而個人資料則係指包含所有能夠識別本人身分或與本人有直接關聯的資訊。 本人傳輸請求權的立法目的,在於解決當事人將資料授權予特定企業或機關使用後,無法追蹤個人資料動向的問題。當事人可透過行使本人資料傳輸請求權,隨時確認資料如何被使用、有無被再次轉交他方,以及自由決定是否收回或轉移持有者擁有的個人資料。有助於解決個人資料利用權限一經授權後便難以掌控的問題,並提高國民對於個人資料的自主控制能力。 本次修法前,本人資料請求權的適用範圍僅限於醫療與電信產業,個人資料保護法施行令預告修訂草案進一步將符合以下標準的個人資料處理者納入本人傳輸請求權適用範圍: 1. 年營業額達1500億韓元以上的企業; 2. 持有個人資料人數達100萬人以上的企業或機構; 3. 敏感資料、高識別度資料達5萬人以上的企業或機構; 4. 2萬人以上大學或公部門機關。 韓國個資會此次提出的預告修訂草案,建立了一套可跨領域適用的個人資料管理政策架構,為國民資料自主性與控制權提供更完整的保護,值得作為我國個人資料治理制度之參考。

歐盟會員國要求分享DNA資料庫

  歐盟十五個會員國為強化對抗恐怖攻擊、跨邊境犯罪及非法遷徙之國際合作,於2007年3月28日提出有關資料分享的立法草案,以期歐盟能夠建立一套資料分享的機制與架構。立法草案明確規範了各成員國就資料保護所應給予的等級,其必須保證個人資料保護必須達到與1980年歐洲理事會(Council of Europe)通過的「保護自動化處理個人資料公約(Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data)」及其於2001年通過的附加議定書相同等級。   該立法草案係根據「Prüm條約」而來,其條約簽署背景為2004年馬德里的恐怖組織炸彈攻擊事件,有鑑打擊恐怖攻擊及跨國犯罪之國際合作,歐盟七個會員國於2005年5月27日在德國、比利時及盧森堡邊境的城市Prüm,簽訂了該條約。條約中規定,簽署國之警察及刑事追訴機關執法於恐怖攻擊及跨邊境犯罪時,得向他簽署國處理相關資料之單位請求有關DNA之分析資料、指紋及相關車籍資料。   目前,歐盟資料保護監督機構(European Data Protection Supervisor)已背書支持建立該機制與架構,並且聲明表示,該架構之建立,仍應注意資料保護的相關事項,在追求資料分享更為便利的同時,應給予人民更為足夠的保護,再者,資料處理的權責單位對於不同的資料類型,也應以不同的方式處理之,越敏感性的資料越應限制其使用目的,並且讓越少人得以接觸。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP