新加坡智慧財產局發布2023年智財調查,分析企業無形資產運用現況

新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2023年9月4日發布《2023年智慧財產調查》(Singapore IP Survey 2023),調查結果顯示,企業最重視的智慧財產為品牌、技術/製程、機密資訊。

為瞭解企業對無形資產(Intangible Assets, 以下簡稱IA)和智慧財產權(Intellectual Property, 以下簡稱IP)的看法和運用現況,以制定強化企業競爭力之智財政策,新加坡政府自2021年發布《2030年智慧財產戰略》(Singapore IP Strategy 2030, SIPS 2030)起,每2年發布一次智財調查。本次調查於2023年2月至3月間進行,對象為新加坡500多家企業,調查結果顯示,企業最重視的前三種IP類型依序為:

1. 有35%的企業表示擁有強大品牌(strong brand)相當重要。
2. 有32%的企業認為擁有新技術及/或新製程(new technology and/or process)相當重要。
3. 有31%的企業認為擁有機密資訊(confidential information)相當重要。

此外,有15%的企業表示,其商業價值的主要收益來自於其IA/IP;且所有受訪企業中有不少企業表示IA/IP有助於提升公司績效,包含:

1. 有17%的企業認為有助於「吸引更多商業合作夥伴」;
2. 有17%的企業認為有助於「提升商業競爭力」;
3. 有15%的企業認為有助於「拓展國際市場」;
4. 有14%的企業認為有助於「增加獲利」。

再者,有80%的企業期待有更多機會運用IA/IP獲得融資。同時,有92%企業在進行相關智財活動(IP activities)時未申請任何政府補助,如新加坡企業發展局(Enterprise Singapore, ESG)的企業發展補助(Enterprise Development Grant, EDG),其中有50%以上的企業表示是因為不清楚相關補助資訊。

最後,僅有15%的企業對其IA/IP進行單獨評價(standalone valuation),而未與其他資產合併評價,但其中僅不到一半是委託評價分析師(Certified Valuation Analyst, CVA)進行。

根據調查結果,新加坡政府認為企業雖擁有大量的IA/IP,但尚未瞭解其價值,導致無法有效地將其IA/IP商業化。因此,新加坡政府於2023年9月4日同時發布《無形資產揭露框架》(Intangibles Disclosure Framework, IDF),鼓勵企業以系統化方式主動對外揭露所持有之IA/IP,藉此協助企業創造更高的價值。我國資策會科法所亦從2013年開始,每2年針對國內上市上櫃公司調查智財管理需求及現況;2021年調查報告顯示,86%的企業已進行智財布局、84%企業有配置智財人員、94%企業有編列智財經費等,顯示我國企業對於智財管理及策略愈來愈重視。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 新加坡智慧財產局發布2023年智財調查,分析企業無形資產運用現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9067&no=55&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
科法觀點
你可能還會想看
日本學術會議建議因應疫情強化ICT建設和推動數位轉型

  日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。

美國司法部主導東南亞各國成立“智慧財產犯罪執法網絡”以有效打擊智慧財產犯罪

  美國司法部(DOJ)宣布召開一區域形會議,目的在建立國際性的智慧財產權犯罪執法網絡(IPCEN),尋找建立一雙邊合作協議,以打擊日益重大的智慧財產犯罪。該會議參與人除美國司法部、國務院、及美國專利商標局官員外,主要為亞洲各國智權執法人員,包含高階警察、海關官員、及檢察官,約七十餘人;上述亞洲各國包含中國、澳洲、汶萊、柬埔寨、印尼、日本、寮國、菲律賓、新加坡、南韓、泰國、及越南等十餘國家。   智權犯罪執法網絡(IPCEN)主要功能有二:一為成立論談空間,使各國執法人員能傳遞有關打擊”智權犯罪及仿冒品”的調查及起訴的成功策略案例;二為加強各國間溝通管道,以有效協調及處理跨國性的智慧財產侵權起訴案件。   對於在亞洲日益嚴重的?版及商標仿冒犯罪,此次會議中討論如何有效加強執法力時,各國代表多承認有效的智慧財產權起訴取決於被害人及執法單位的合作。   各國代表並說明智慧財產犯罪的嚴重性及建立國際性的智權犯罪執法網絡的重要:「保護美國及世界各國的智慧財產權為各國司法單位首要的任務之一,而在智權犯罪最嚴重的區域,建立智慧財產犯罪執法網絡(IPCEN)更是重要的執行步驟,以有效保護世界各國的智慧財產權」。「仿冒品不僅損害世界經濟體系,更嚴重威脅到各國人民的健康及安全,惟有建立一國際性的網絡協定,才能打擊嚴重的智慧財產犯罪」。「仿冒品,?版品及游走各邊境及海關政策漏洞已造成權利人近百億元損失,而IPCEN能使各國執法單位相互結盟,將可保障合法權利人權利,避免侵權者藉由跨國犯罪免責及獲取不當利益」。   美國司法部已派駐一經驗豐富的聯邦檢察官於美國駐泰國大使館,專責推動此網絡建立的執行,以保護智慧財產權人之權益。

智慧聯網基礎設施與應用服務之法制建構-資訊安全與車聯網之例

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP