韓國通過個人資料保護法修法並對其執行命令指引提出修正草案

2023年9月27日,韓國個人資訊保護委員會(Personal Information Protection Commission, PIPC)就《個人資料保護法》(Personal Information Protection Act, PIPA)執行命令之指引修正(Enforcement Decree Amendment Guide)草案展開諮詢,諮詢將持續至2023年11月30日為止。韓國於2023年3月修正個人資料保護法,該修正於2023年9月15日生效,而指引修正之目的即是協助各界能夠遵循新修法後的義務,因此該指引草案詳細說明了修法後有關資料蒐集、獲得當事人同意之條件、使用和提供存取要求等內容。最終版的指引預計將於2023年12月發布。

韓國個人資料保護法於2023年的修訂範圍廣泛,特別是關於跨領域和行業個人資料處理標準等,使得公私部門中的資料處理人員和資料隱私人員必須深入瞭解此些變化,以確保能遵守最新的法律規定。

修訂後的韓國個人資料保護法強調實際保障資料主體的權利,並調整網路和實體業務之間不一致的資料處理標準,藉以迎接全面的數位轉型。此次韓國個人資料保護法修正重點如下:

1.強調確保資料主體的權利,即使在緊急情況下蒐集或處理個人資料時仍須提供足夠的保護措施。

2.釐清並調整網路和實體業務的不明確或不一致的法規,例如資料外洩的報告和通知時限、蒐集和利用14歲以下兒童個人資料需要獲得法定監護人同意的要求,以及對違規行為實施行政處罰的標準等。

3.要求處理大量個人資料的公共機構需強化保護措施,包括應分析和檢查存取記錄、指定負責每個系統的管理員,以及通知使用公共系統未經授權存取個人資料的事件等。

4.跨境資料傳輸條件調整為可傳輸至保護程度與韓國相當的國家或地區;並調整處罰金額,防止處罰金額過高超出責任範圍。。

韓國PIPC主委表示,此次對韓國個人資料保護法的修訂,反映了對資料主體權利更強大保護的需求。同時,考慮到此次修法的變動較大,建議各領域從業人員皆須仔細確認相關法遵內容,PIPC將針對不同領域需求來量身定制說明活動,積極提高大眾對修訂後的《PIPA》內容的理解程度,以確保韓國個人資料保護法修正後的實施。

相關連結
你可能會想參加
※ 韓國通過個人資料保護法修法並對其執行命令指引提出修正草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9084&no=67&tp=1 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟個人資料保護小組提出智慧電錶隱私指導原則

  由於近年來運算技術的成熟,使得許多仰賴高運算技術的產業有重新發展的契機,智慧電網正是其中一例;而智慧電網所涉及的資訊繁多,例如個人資產的位址資訊可能會被納入電網中作定位與分析,因此其所衍伸的個人資料與隱私保護議題,近來備受重視。   歐盟個人資料保護小組(Article 29 Data Protection Working Party)於今年四月針對智慧電錶的隱私議題,提出指導建議(Opinion 12/2011 on Smart Metering),並明確指出,電網中的電錶會有一組獨特的識別碼(Meter Identification Number),此可連結至特定用戶,因此由電錶蒐集到的資訊,大部分都符合歐盟個人資料保護指令(Directive 95/46/EC)中的「個人資料」(Personal Data)。   倘若要對透過電錶所蒐集的資料進行處理,必須要基於充分告知(Fully-informed),取得用戶同意;也應該讓用戶依照意願自主行使同意或撤銷該同意,此會涉及電錶設計的方式,該小組建議可在用戶端電錶的控制鑲板上設置「按鈕」(Push Button),讓用戶得隨時選擇同意與否。另外,智慧電錶亦具有設定資料傳輸頻率的功能,此攸關資料被蒐集之範圍是否妥適,舉例言之,倘若用戶與電網服務提供者之契約,是全天以同一個費率計算電價,則其電錶會把整日用電量讀成一筆資料,反之倘若用戶是採用一天分不同時段不同費率的方式,則該電錶會每日分成數個時段讀取用電量;惟在供應端可遠端遙控這些電錶讀取頻率的情況下,應確保這些資料僅於系統運行所需,方傳輸至供應端供讀取。   其他的電表資訊處理細節,事實上類似於電信事業處理交通資訊或位址資訊的作法,例如不再用到的電錶資訊,應盡速刪除之;供應端也必須訂定書面的資料保存政策、評估所需電錶資訊之目的、並在該目的範圍內以最小限度原則保存之。

歐盟執委會規劃制訂「2050能源發展藍圖」

  歐盟執委會(European Commission)於去(2011)年12月公布「2050能源發展藍圖(Energy Roadmap 2050: a secure, competitive and low-carbon energy sector is possible)」,主要係執委會承諾將推動歐盟於2050年前達成溫室氣體80-95%減量目標(相較於1990年排放基準),建立具競爭力之低碳經濟社會,所以規劃擬訂「2050能源發展藍圖」,期望能導引歐盟走向「無碳化目標(Decarbonisation Objective)」,同時並確保能源供應安全及保持國際競爭優勢。   並且,奠基於之前「歐洲2020發展策略(Europe 2020)」所設立推動「20-20-20」溫室氣體減量及能源效率目標,歐盟執委會認為進一步擬訂「後2020時期策略(Post-2020 Strategies)」是非常亟需的,並且認為以現有規劃持續推動,2050年僅將達成減少40%減量目標,對於歐盟建立成為無碳化社會之目標,是非常不足夠的,所以擬訂此一發展藍圖。   「2050能源發展藍圖」主要設定了五項無碳化發展願景(Scenarios):包含提高能源效率(High Energy Efficiency)、多元化能源技術(Diversified Supply Technologies)、提昇再生能源比例(High Renewable Energy Sources)、 因應碳捕捉發展(Delayed CCS)、 降低核能發電(Low Nuclear)等,並對於「2020至2050發展規劃(Moving from 2020 to 2050)」,研析諸如提昇能源節省與管理需求(Energy Saving and Managing Demand)、移轉使用再生能源發電(Switching to Renewable Energy Sources)、天然氣過渡重要角色(Gas Plays a Key Role in the Transition)、智慧能源技術及儲存發展(Smart Technology, Storage and Alternative Fuels)、電力管理新思考(New Ways to Manage Electricity)、整合區域發電資源與集中系統(Integrating Local Resources and Centralised Systems)等重要議題。未來歐盟執委會如何進一步依據「2050能源發展藍圖」規劃制訂推動措施及配套機制,值得持續觀察研析。

TOP